cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005930 Theta series of D_5 lattice.

Original entry on oeis.org

1, 40, 90, 240, 200, 560, 400, 800, 730, 1240, 752, 1840, 1200, 2000, 1600, 2720, 1480, 3680, 2250, 3280, 2800, 4320, 2800, 5920, 2960, 5240, 3760, 6720, 4000, 7920, 4800, 6720, 5850, 8960, 4320, 10720, 6200, 9840, 7600, 11040, 5872, 12960, 7520, 12400
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			1 + 40*q^2 + 90*q^4 + 240*q^6 + 200*q^8 + 560*q^10 + 400*q^12 + 800*q^14 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000132(2n) = a(n). A008422 gives dual lattice.

Programs

  • Mathematica
    terms = 44; phi[q_] := EllipticTheta[3, 0, q]; s = (phi[q]^5 + phi[-q]^5)/2 + O[q]^(2 terms); DeleteCases[CoefficientList[s, q], 0][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
  • PARI
    {a(n)=if(n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^5, n))} /* Michael Somos, Nov 03 2006 */

Formula

G.f.: (theta_3(q^(1/2))^5+theta_4(q^(1/2))^5)/2
Expansion of ( phi(q)^5 + phi(-q)^5 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 2^(1/2) (t/i)^(5/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A008422.