A005938 Pseudoprimes to base 7.
6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, 10225, 10585, 10621, 11041, 11521, 12025, 13665, 14089, 16725, 16806, 18721, 19345, 20197, 20417, 20425, 22945, 25829, 26419, 29234, 29341, 29857, 29891, 30025, 30811, 33227
Offset: 1
Keywords
References
- R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..87448 (terms a(1)-a(697) from R. J. Mathar, a(698)-a(1000) from T. D. Noe)
- J. Bernheiden, Pseudoprimes (Text in German)
- C. Pomerance & N. J. A. Sloane, Correspondence, 1991
- F. Richman, Primality testing with Fermat's little theorem
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Mathematica
Select[Range[31000], ! PrimeQ[ # ] && PowerMod[7, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 14 2006 *)
-
Python
from sympy import isprime def ok(n): return pow(7, n-1, n) == 1 and not isprime(n) print(list(filter(ok, range(1, 34000)))) # Michael S. Branicky, Jun 25 2021
Comments