A006036 Primitive pseudoperfect numbers.
6, 20, 28, 88, 104, 272, 304, 350, 368, 464, 490, 496, 550, 572, 650, 748, 770, 910, 945, 1184, 1190, 1312, 1330, 1376, 1430, 1504, 1575, 1610, 1696, 1870, 1888, 1952, 2002, 2030, 2090, 2170, 2205, 2210, 2470, 2530, 2584, 2590, 2870, 2990, 3010, 3128, 3190, 3230, 3290, 3410, 3465, 3496, 3710, 3770, 3944, 4070, 4095, 4130, 4216, 4270, 4288, 4408, 4510, 4544, 4672, 4690, 4712, 4730, 4970
Offset: 1
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Richard K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991
- Eric Weisstein's World of Mathematics, Primitive Pseudoperfect Number.
- Andreas Zachariou and Eleni Zachariou, Perfect, Semi-Perfect and Ore Numbers, Bull. Soc. Math. Grèce (New Ser.), Vol. 13, No. 13A (1972), pp. 12-22; alternative link.
Programs
-
Haskell
a006036 n = a006036_list !! (n-1) a006036_list = filter (all (== 0) . map a210455 . a027751_row) a005835_list -- Reinhard Zumkeller, Jan 21 2013
-
Maple
with(numtheory): with(combinat): issemiperfect := proc(n) local b, S; b:=false; S:=subsets(divisors(n) minus {n}); while not S[finished] do if convert(S[nextvalue](),`+`)=n then b:=true; break fi od; return b end: L:=remove(proc(z) isprime(z) end,[$1..5000]): PP:=[]: for zz from 1 to 1 do for n in L do if issemiperfect(n) then PP:=[op(PP),n] fi od od; sr := proc(l::list) local x, R, S, P, L; S:=sort(l); R:=[]; P:=S; for x in S do if not(x in R) then L:=selectremove(proc(z) z>x and z mod x = 0 end, P); R:=[op(R),op(L[1])]; P:=L[2]; fi; od; return P; end: PPP:=sr(PP); # primitive pseudoperfect numbers less than 5000 # Walter Kehowski, Aug 12 2005
-
Mathematica
(* First run one of the programs for A005835 *) A006036 = A005835; curr = 1; max = A005835[[-1]]; While[curr < Length[A006036], currMult = A006036[[curr]]; A006036 = Complement[A006036, Range[2currMult, Ceiling[max/currMult] currMult, currMult]]; curr++]; A006036 (* Alonso del Arte, Sep 08 2012 *)
Extensions
More terms from Walter Kehowski, Aug 12 2005
Comments