cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006036 Primitive pseudoperfect numbers.

Original entry on oeis.org

6, 20, 28, 88, 104, 272, 304, 350, 368, 464, 490, 496, 550, 572, 650, 748, 770, 910, 945, 1184, 1190, 1312, 1330, 1376, 1430, 1504, 1575, 1610, 1696, 1870, 1888, 1952, 2002, 2030, 2090, 2170, 2205, 2210, 2470, 2530, 2584, 2590, 2870, 2990, 3010, 3128, 3190, 3230, 3290, 3410, 3465, 3496, 3710, 3770, 3944, 4070, 4095, 4130, 4216, 4270, 4288, 4408, 4510, 4544, 4672, 4690, 4712, 4730, 4970
Offset: 1

Views

Author

Keywords

Comments

A primitive pseudoperfect number is a pseudoperfect number that is not a multiple of any other pseudoperfect number.
The odd entries so far are identical to the odd primitive abundant A006038. - Walter Kehowski, Aug 12 2005
Zachariou and Zachariou (1972) called these numbers "irreducible semiperfect numbers". - Amiram Eldar, Dec 04 2020

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006036 n = a006036_list !! (n-1)
    a006036_list = filter (all (== 0) . map a210455 . a027751_row) a005835_list
    -- Reinhard Zumkeller, Jan 21 2013
  • Maple
    with(numtheory): with(combinat): issemiperfect := proc(n) local b, S;
    b:=false; S:=subsets(divisors(n) minus {n}); while not S[finished] do if
    convert(S[nextvalue](),`+`)=n then b:=true; break fi od; return b end:
    L:=remove(proc(z) isprime(z) end,[$1..5000]): PP:=[]: for zz from 1 to 1 do
    for n in L do if issemiperfect(n) then PP:=[op(PP),n] fi od od;
    sr := proc(l::list) local x, R, S, P, L; S:=sort(l); R:=[]; P:=S;
    for x in S do
    if not(x in R) then
    L:=selectremove(proc(z) z>x and z mod x = 0 end, P);
    R:=[op(R),op(L[1])]; P:=L[2];
    fi; od; return P; end:
    PPP:=sr(PP); # primitive pseudoperfect numbers less than 5000 # Walter Kehowski, Aug 12 2005
  • Mathematica
    (* First run one of the programs for A005835 *) A006036 = A005835; curr = 1; max = A005835[[-1]]; While[curr < Length[A006036], currMult = A006036[[curr]]; A006036 = Complement[A006036, Range[2currMult, Ceiling[max/currMult] currMult, currMult]]; curr++]; A006036 (* Alonso del Arte, Sep 08 2012 *)

Extensions

More terms from Walter Kehowski, Aug 12 2005