A006048 Number of entries in first n rows of Pascal's triangle not divisible by 3.
1, 3, 6, 8, 12, 18, 21, 27, 36, 38, 42, 48, 52, 60, 72, 78, 90, 108, 111, 117, 126, 132, 144, 162, 171, 189, 216, 218, 222, 228, 232, 240, 252, 258, 270, 288, 292, 300, 312, 320, 336, 360, 372, 396, 432, 438, 450, 468, 480, 504, 540, 558, 594, 648, 651, 657, 666, 672, 684, 702, 711, 729, 756, 762, 774, 792, 804, 828, 864, 882, 918, 972, 981, 999, 1026, 1044, 1080, 1134, 1161, 1215, 1296
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 53.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See p. 1.
- Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & graphics 13.1 (1989): 59-62.
- Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics 13.1 (1989), 59-62. (Annotated scanned copy)
- Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics 13.1 (1989), 59-60. (Annotated scanned copy)
- A. Lakhtakia et al., Fractal sequences derived from the self-similar extensions of the Sierpinski gasket, J. Phys. A 21 (1988), 1925-1928.
Crossrefs
Partial sums of A006047.
Programs
-
Python
from math import prod from gmpy2 import digits def A006048(n): return sum(prod(int(d)+1 for d in digits(m,3)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
-
Python
from math import prod from gmpy2 import digits def A006048(n): d = list(map(lambda x:int(x)+1,digits(n+1,3)[::-1])) return sum((b-1)*prod(d[a:])*6**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025
Extensions
More terms from N. J. A. Sloane, Apr 23 2025