A194459 Number of entries in the n-th row of Pascal's triangle not divisible by 5.
1, 2, 3, 4, 5, 2, 4, 6, 8, 10, 3, 6, 9, 12, 15, 4, 8, 12, 16, 20, 5, 10, 15, 20, 25, 2, 4, 6, 8, 10, 4, 8, 12, 16, 20, 6, 12, 18, 24, 30, 8, 16, 24, 32, 40, 10, 20, 30, 40, 50, 3, 6, 9, 12, 15, 6, 12, 18, 24, 30, 9, 18, 27, 36, 45, 12, 24, 36, 48, 60, 15, 30
Offset: 0
Examples
n = 32 = 112|_5: b(32,1) = 2, b(32,2) = 1, thus a(32) = 2^2 * 3^1 = 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024.
Crossrefs
Programs
-
Haskell
a194459 = sum . map (signum . flip mod 5) . a007318_row -- Reinhard Zumkeller, Feb 04 2015
-
Maple
a:= proc(n) local l, m, t; m:= n; l:= [0$5]; while m>0 do t:= irem(m, 5, 'm')+1; l[t]:=l[t]+1 od; mul(r^l[r], r=2..5) end: seq(a(n), n=0..100);
-
Mathematica
Nest[Join[#, 2#, 3#, 4#, 5#]&, {1}, 4] (* Jean-François Alcover, Apr 12 2017, after code by Robert G. Wilson v in A006047 *)
-
Python
from math import prod from sympy.ntheory import digits def A194459(n): s = digits(n,5)[1:] return prod((d+1)**s.count(d) for d in range(1,5)) # Chai Wah Wu, Jul 23 2025
Formula
Extensions
Edited by Alois P. Heinz, Sep 06 2011
Comments