cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006078 Number of triangulated (n+2)-gons rooted at an exterior edge.

Original entry on oeis.org

1, 1, 5, 12, 45, 143, 511, 1768, 6330, 22610, 81818, 297160, 1086813, 3991995, 14733435, 54587280, 203000094, 757398510, 2834519142, 10637507400, 40023665682, 150946230006, 570534682710, 2160865067312, 8199711750100
Offset: 2

Views

Author

N. J. A. Sloane, E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Programs

  • Maple
    G:=(4*(1-x-x^2)-(1-2*x)*(1-4*x)^(1/2)-3*(1-4*x^2)^(1/2))/8/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=2..28); # Emeric Deutsch, Dec 19 2004
  • Mathematica
    g:=(4*(1-x-x^2)-(1-2*x)*(1-4*x)^(1/2)-3*(1-4*x^2)^(1/2))/8/x^2; gser := Series[g, {x, 0, 26}]; Drop[ CoefficientList[gser, x], 2] (* Jean-François Alcover, Apr 06 2012, after Emeric Deutsch *)
    Drop[CoefficientList[Series[(4(1-x-x^2)- (1-2x)Sqrt[1-4x]- 3Sqrt[1- 4x^2])/(8x^2),{x,0,30}],x],2] (* Harvey P. Dale, Apr 07 2013 *)

Formula

Stockmeyer gives a g.f.
G.f.: (4*(1-x-x^2)-(1-2*x)(1-4*x)^(1/2)-3(1-4*x^2)^(1/2))/(8*x^2). - Emeric Deutsch, Dec 19 2004
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014

Extensions

More terms from Emeric Deutsch, Dec 19 2004