A006078 Number of triangulated (n+2)-gons rooted at an exterior edge.
1, 1, 5, 12, 45, 143, 511, 1768, 6330, 22610, 81818, 297160, 1086813, 3991995, 14733435, 54587280, 203000094, 757398510, 2834519142, 10637507400, 40023665682, 150946230006, 570534682710, 2160865067312, 8199711750100
Offset: 2
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
Programs
-
Maple
G:=(4*(1-x-x^2)-(1-2*x)*(1-4*x)^(1/2)-3*(1-4*x^2)^(1/2))/8/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=2..28); # Emeric Deutsch, Dec 19 2004
-
Mathematica
g:=(4*(1-x-x^2)-(1-2*x)*(1-4*x)^(1/2)-3*(1-4*x^2)^(1/2))/8/x^2; gser := Series[g, {x, 0, 26}]; Drop[ CoefficientList[gser, x], 2] (* Jean-François Alcover, Apr 06 2012, after Emeric Deutsch *) Drop[CoefficientList[Series[(4(1-x-x^2)- (1-2x)Sqrt[1-4x]- 3Sqrt[1- 4x^2])/(8x^2),{x,0,30}],x],2] (* Harvey P. Dale, Apr 07 2013 *)
Formula
Stockmeyer gives a g.f.
G.f.: (4*(1-x-x^2)-(1-2*x)(1-4*x)^(1/2)-3(1-4*x^2)^(1/2))/(8*x^2). - Emeric Deutsch, Dec 19 2004
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014
Extensions
More terms from Emeric Deutsch, Dec 19 2004