A006120 Sum of Gaussian binomial coefficients [ n,k ] for q=6.
1, 2, 9, 88, 2111, 118182, 16649389, 5547079988, 4671840869691, 9326302435784002, 47100039978152210249, 564020035264998031552848, 17088883834526416216141122391, 1227783027118593811726444427584862, 223195138386683651821176756496371359589
Offset: 0
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..70
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
Programs
-
Magma
[n le 2 select n else 2*Self(n-1)+(6^(n-2)-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 13 2016
-
Mathematica
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(6^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *) Table[Sum[QBinomial[n, k, 6], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
Formula
a(n) = 2*a(n-1)+(6^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 6^(n^2/4), where c = EllipticTheta[3,0,1/6]/QPochhammer[1/6,1/6] = 1.656816524577... if n is even and c = EllipticTheta[2,0,1/6]/QPochhammer[1/6,1/6] = 1.630173070572... if n is odd. - Vaclav Kotesovec, Aug 21 2013