cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1.

Original entry on oeis.org

5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299, 2600, 2783, 5405, 6556, 6811, 8855, 9800, 12726, 13775, 18655, 21183, 24024, 24432, 24880, 25839, 26642, 35456, 40081, 43680, 48203, 48762, 52554, 61760, 63665, 64232, 75140, 79118, 95709, 106893, 109939
Offset: 1

Views

Author

Keywords

Comments

Nelson, Penney, & Pomerance call these "Aaron numbers" because 714 is Babe Ruth's lifetime home run record, Hank Aaron's 715th home run broke this record, and 714 and 715 have the same sum of prime divisors. - David W. Wilson
Number of terms < 10^n: 1, 4, 9, 19, 40, 139, 494, 1748, 6650, ..., . - Robert G. Wilson v, Jan 23 2012

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • P. Hoffman, The Man Who Loved Only Numbers, pp. 179-181, Hyperion, NY 1998.
  • J. Roberts, Lure of Integers, pp. 250, MAA 1992.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 159-160, Penguin 1986.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n);
    for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od:
    for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od:
    # Alternative:
    SumPF := proc(n) option remember; add(NumberTheory:-PrimeFactors(n)) end:
    seq(ifelse(SumPF(n) = SumPF(n+1), n, NULL), n = 1..3000); # Peter Luschny, Jun 11 2024
  • Mathematica
    fQ[n_] := Plus @@ (First@# & /@ FactorInteger[n]) == Plus @@ (First@# & /@ FactorInteger[n + 1]); Select[ Range@ 100000, fQ] (* Robert G. Wilson v, Jan 22 2012 *)
  • PARI
    sopf(n)=my(f=factor(n));sum(i=1,#f[,1],f[i,1])
    is(n)=sopf(n)==sopf(n+1) \\ Charles R Greathouse IV, Jan 27 2012
    
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, k, sopfk, sopfkp1 = [], 2, 2, 3
      while len(alst) < terms:
        if sopfkp1 == sopfk: alst.append(k)
        k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in factorint(k+2))
      return alst
    print(aupton(42)) # Michael S. Branicky, May 24 2021