A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1.
5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299, 2600, 2783, 5405, 6556, 6811, 8855, 9800, 12726, 13775, 18655, 21183, 24024, 24432, 24880, 25839, 26642, 35456, 40081, 43680, 48203, 48762, 52554, 61760, 63665, 64232, 75140, 79118, 95709, 106893, 109939
Offset: 1
Keywords
References
- John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
- P. Hoffman, The Man Who Loved Only Numbers, pp. 179-181, Hyperion, NY 1998.
- J. Roberts, Lure of Integers, pp. 250, MAA 1992.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 159-160, Penguin 1986.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..6651 from Robert G. Wilson v)
- Joe K. Crump, Ruth-Aaron Pairs-an algorithm
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
- Brady Haran and Carl Pomerance, Aaron Numbers, Numberphile video (2017).
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74. (Annotated scanned copy)
- Dana Mackenzie, Homage to an Itinerant Master, Science, Vol. 275 (1997), p. 759; alternative link.
- Carol Nelson, David E. Penney, and Carl Pomerance, 714 and 715, J. Recreational Math. 7:2 (1994), pp. 87-89.
- Ivars Peterson, Playing with Ruth-Aaron pairs
- Terry Trotter, Jr., Ruth-Aaron Numbers.
- Eric Weisstein's World of Mathematics, Ruth-Aaron Pair.
Programs
-
Maple
with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n); for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od: for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od: # Alternative: SumPF := proc(n) option remember; add(NumberTheory:-PrimeFactors(n)) end: seq(ifelse(SumPF(n) = SumPF(n+1), n, NULL), n = 1..3000); # Peter Luschny, Jun 11 2024
-
Mathematica
fQ[n_] := Plus @@ (First@# & /@ FactorInteger[n]) == Plus @@ (First@# & /@ FactorInteger[n + 1]); Select[ Range@ 100000, fQ] (* Robert G. Wilson v, Jan 22 2012 *)
-
PARI
sopf(n)=my(f=factor(n));sum(i=1,#f[,1],f[i,1]) is(n)=sopf(n)==sopf(n+1) \\ Charles R Greathouse IV, Jan 27 2012
-
Python
from sympy import factorint def aupton(terms): alst, k, sopfk, sopfkp1 = [], 2, 2, 3 while len(alst) < terms: if sopfkp1 == sopfk: alst.append(k) k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in factorint(k+2)) return alst print(aupton(42)) # Michael S. Branicky, May 24 2021
Comments