cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A039753 Numbers common to A006145 and A039752.

Original entry on oeis.org

5, 77, 714, 5405, 26642, 52554, 95709, 154842, 173162, 204258, 208581, 248109, 278277, 332994, 417162, 445305, 529194, 554682, 693610, 851709, 869054, 1232746, 1252509, 1275546, 1275730, 1549454, 1600962, 1607045, 1671333, 1672710, 1777026
Offset: 1

Views

Author

Keywords

Comments

Mostly the subset of either A006145 or A039752 where both a(n) and a(n)+1 are squarefree (members of A005117), but also members of A178214. - Hans Havermann, Dec 16 2010, Dec 19 2010

Examples

			77 (7*11, with 78 = 2*3*13) is a member of both A006145 and A039752 (7+11 = 2+3+13) and so 77 is a member of this sequence.
7129199 (7*11^2*19*443, with 7129200 = 2^4*3*5^2*13*457) is a member of both A006145 (7+11+19+443 = 2+3+5+13+457) and A039752 (7+11+11+19+443 = 2+2+2+2+3+5+5+13+457) and so 7129199 is also a member of this sequence.
		

Crossrefs

A006146 Sums of prime divisors of Ruth-Aaron numbers (A006145).

Original entry on oeis.org

5, 5, 7, 18, 15, 20, 44, 46, 29, 31, 50, 30, 20, 34, 75, 162, 146, 46, 14, 113, 53, 66, 333, 36, 514, 318, 43, 193, 279, 418, 30, 121, 55, 485, 200, 136, 77, 37, 211, 587, 147, 269, 477, 108, 136, 235, 185, 290, 333, 309, 493, 177, 199, 223, 641, 531, 182, 368
Offset: 1

Views

Author

Keywords

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • Dana Mackenzie, Homage to an itinerant master, Science, vol. 275, p. 759, 1997.
  • Carol Nelson, David E. Penney, and Carl Pomerance, 714 and 715. Journal of Recreational Mathematics 7(2):87-89, 1974.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n);
    for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od:
    for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od:
  • Mathematica
    Cases[Partition[(Plus@@(First@#&/@FactorInteger@#)&/@Range@100000),2,1],{a_,a_}:>a] (* Hans Rudolf Widmer, May 31 2024 *)
  • Python
    from sympy import primefactors
    def aupton(terms):
      alst, k, sopfk, sopfkp1 = [], 0, 0, 1
      while len(alst) < terms:
        k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in primefactors(k+1))
        if sopfkp1 == sopfk: alst.append(sopfk)
      return alst
    print(aupton(58)) # Michael S. Branicky, May 05 2021

Formula

a(n) = A008472(A006145(n)) = A008472(A006145(n) + 1). - Amiram Eldar, Nov 24 2019

A039752 Ruth-Aaron numbers (2): sum of prime divisors of n = sum of prime divisors of n+1 (both taken with multiplicity).

Original entry on oeis.org

5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248, 4185, 4191, 5405, 5560, 5959, 6867, 8280, 8463, 10647, 12351, 14587, 16932, 17080, 18490, 20450, 24895, 26642, 26649, 28448, 28809, 33019, 37828, 37881, 41261, 42624, 43215, 44831, 44891, 47544, 49240
Offset: 1

Views

Author

Keywords

Comments

So called because 714 is Babe Ruth's lifetime home run record, Hank Aaron's 715th home run broke this record and 714 and 715 have the same sum of prime divisors, taken with multiplicity.
An infinite number of terms would follow from A175513 and the assumption of Schinzel's Hypothesis H. - Hans Havermann, Dec 15 2010
A 3109-digit term determined by Jens Kruse Andersen is currently the largest-known. - Hans Havermann, Dec 21 2010
The sum of this sequence's reciprocals is 0.42069... - Hans Havermann, Dec 21 2010
Both 417162 and 417163 are in the sequence. Hence these two numbers along with 417164 constitute a Ruth-Aaron "triple". The smallest member of the next triple is 6913943284. - Hans Havermann, Dec 01 2010, Dec 13 2010
The number of terms <= x is at most O(x (loglog x)^4 / (log x)^2) (Pomerance 1999/2002). - Tomohiro Yamada, Apr 22 2017

Examples

			7129199 (7*11^2*19*443, with 7129200 = 2^4*3*5^2*13*457) is in this sequence because 7+11+11+19+443 = 2+2+2+2+3+5+5+13+457.
		

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • S. G. Krantz, Mathematical Apocrypha, MAA, 2002, see p. 26.
  • Dana Mackenzie, Homage to an itinerant master, Science 275, p. 759, 1997.

Crossrefs

Programs

  • Maple
    anzahl:=0: n:=4: nr:=0: g:=nops(ifactors(n)[2]):
    s[nr]:=sum(ifactors(n)[2,u][1]*ifactors(n)[2,u][2],u=1..g):
    for j from n+1 to 1000000 do nr:=(nr+1) mod 2: g:=nops(ifactors(j)[2]):
    s[nr]:=sum(ifactors(j)[2,u][1]*ifactors(j)[2,u][2],u=1..g):
    if (s[0]=s[1]) then anzahl):=anzahl+1: print(anzahl,j-1,j,s[0]): end if:
    end do:
    # Paul Weisenhorn, Jul 02 2009
  • Mathematica
    ppf[n_] := Plus @@ ((#[[1]] #[[2]]) & /@ FactorInteger[n]); Select[Range[50000], ppf[#] == ppf[#+1] &] (* Harvey P. Dale, Apr 27 2009 *)
  • PARI
    is_A039752(n)=A001414(n)==A001414(n+1) \\ M. F. Hasler, Mar 01 2014
    
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, k, sopfrk, sopfrkp1 = [], 2, 2, 3
      while len(alst) < terms:
        if sopfrkp1 == sopfrk: alst.append(k)
        k += 1
        fkp1 = factorint(k+1)
        sopfrk, sopfrkp1 = sopfrkp1, sum(p*fkp1[p] for p in fkp1)
      return alst
    print(aupton(42)) # Michael S. Branicky, May 08 2021

A228126 Sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1.

Original entry on oeis.org

2, 3, 4, 9, 20, 24, 98, 170, 1104, 1274, 2079, 2255, 3438, 4233, 4345, 4716, 5368, 7105, 7625, 10620, 13350, 13775, 14905, 20220, 21385, 23408, 25592, 26123, 28518, 30457, 34945, 35167, 38180, 45548, 49230, 51911, 52206, 53456, 56563, 61456, 65429, 66585
Offset: 1

Views

Author

Abhiram R Devesh, Aug 11 2013

Keywords

Comments

This is an extension to Ruth-Aaron pairs. Sum of prime factors (inclusive of multiplicity) of pair of Consecutive positive integers are also consecutive.
The number of pairs less than 10^k (k=1,2,3,4,5,6,..) with this property are 4,7,8,19,55,149,...
Up to 10^13 there are only 5 sets of consecutive terms, namely, (2, 3), (3,4), (27574665988, 27574665989), (862179264458, 1862179264459) and (9600314395008, 9600314395009). - Giovanni Resta, Dec 24 2013
The sum of reciprocals of this sequence is approximately equal to 1.3077. - Abhiram R Devesh, Jun 14 2014

Examples

			For n=20: prime factors = 2,2,5; sum of prime factors = 9.
For n+1=21: prime factors = 3,7; sum of prime factors = 10.
		

Crossrefs

Cf. A001414, A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1.

Programs

  • Mathematica
    spd[n_]:=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]; Rest[ Position[ Partition[Array[spd,70000],2,1],?(#[[2]]-#[[1]]==1&),{1}, Heads->False]//Flatten] (* _Harvey P. Dale, Sep 07 2016 *)
  • PARI
    sopfm(n)=my(f=factor(n));sum(i=1,#f[,1],f[i,1]*f[i,2])
    for(n=1,10^5,if(sopfm(n)==sopfm(n+1)-1,print1(n,","))) /* Ralf Stephan, Aug 12 2013 */
  • Python
    ## sumdivisors(n) is a function that would return the sum of prime
    ## divisors of n. (See A001414)
    i=2
    while i < 100000:
      sdi=sumdivisors(i)
      sdip=sumdivisors(i+1)
      if sdi==sdip-1:
        print(i)
      i=i+1
    

Extensions

More terms from Ralf Stephan, Aug 12 2013

A129316 Positive integers k such that sopfr(k) divides sopfr(k+1), where sopfr(k) is the sum of the prime factors of k, counting multiplicity.

Original entry on oeis.org

5, 8, 15, 77, 125, 160, 252, 496, 714, 948, 980, 1045, 1053, 1260, 1330, 1378, 1404, 1430, 1508, 1520, 1610, 1750, 1862, 1890, 2170, 2491, 2680, 2821, 3094, 3100, 3248, 3400, 3591, 3610, 3652, 3808, 4185, 4191, 4384, 4452, 4500, 4598, 4906, 5120, 5145
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Comments

A generalization of Ruth-Aaron pairs (A006145).

Examples

			a(6)=160 since sopfr(160)=sopfr(2^5*5)=10+5=15 and sopfr(161)=sopfr(7*23)=30.
		

Crossrefs

Programs

Formula

sopfr(k+1) mod sopfr(k) = 0.

A129317 The second of the pair of consecutive integers k and k+1 such that sopfr(k) divides sopfr(k+1), where sopfr(k) is the sum of the prime factors of k, counting multiplicity.

Original entry on oeis.org

6, 9, 16, 78, 126, 161, 253, 497, 715, 949, 981, 1046, 1054, 1261, 1331, 1379, 1405, 1431, 1509, 1521, 1611, 1751, 1863, 1891, 2171, 2492, 2681, 2822, 3095, 3101, 3249, 3401, 3592, 3611, 3653, 3809, 4186, 4192, 4385, 4453, 4501, 4599, 4907, 5121, 5146
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Comments

A129316 is the first element of the pair.
A generalization of Ruth-Aaron pairs (A006145).

Examples

			a(6)=161 since sopfr(160)=sopfr(2^5*5)=10+5=15 and sopfr(161)=sopfr(7*23)=30.
		

Crossrefs

Formula

sopfr(k+1) mod sopfr(k) = 0.
a(n) = A129316(n+1). - Amiram Eldar, Oct 26 2019

A129318 a(n) = sopfr(A129316(n)), where sopfr(x) is the sum of the prime factors of x, counting multiplicity.

Original entry on oeis.org

5, 6, 8, 18, 15, 15, 17, 39, 29, 86, 23, 35, 25, 22, 33, 68, 26, 31, 46, 32, 37, 24, 35, 23, 45, 100, 78, 51, 39, 45, 44, 33, 35, 45, 98, 34, 45, 141, 147, 67, 25, 43, 236, 25, 29, 75, 150, 29, 76, 125, 160, 26, 121, 122, 73, 37, 52, 56, 40, 39, 54, 58, 239, 69, 36, 39
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007, corrected Apr 09 2007

Keywords

Examples

			a(6)=15 since sopfr(A129316(6))=sopfr(160)=sopfr(2^5*5)=15.
		

Crossrefs

A129319 a(n) = sopfr(A129317(n)), where sopfr(x) is the sum of the prime factors of x, counting multiplicity.

Original entry on oeis.org

5, 6, 8, 18, 15, 30, 34, 78, 29, 86, 115, 525, 50, 110, 33, 204, 286, 62, 506, 32, 185, 120, 35, 92, 180, 100, 390, 102, 624, 450, 44, 198, 455, 180, 294, 306, 45, 141, 882, 134, 650, 86, 708, 575, 116, 75, 150, 174, 152, 375, 160, 286, 242, 122, 584, 518, 1456, 448
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Examples

			a(6)=30 since sopfr(A129317(6))=sopfr(161)=sopfr(7*23)=30.
		

Crossrefs

A054378 Sums of prime factors of A039752, including multiplicities.

Original entry on oeis.org

5, 6, 8, 18, 15, 29, 86, 33, 32, 35, 100, 44, 45, 141, 75, 150, 160, 122, 40, 54, 39, 205, 532, 107, 79, 93, 421, 401, 193, 66, 144, 117, 149, 211, 93, 64, 57, 118, 480, 82, 299, 1242, 485, 176, 774, 152, 78, 89, 216, 72, 53, 218, 429, 587, 245, 295, 1924
Offset: 1

Views

Author

Keywords

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.

Crossrefs

A045759 Maris-McGwire numbers: numbers k such that f(k) = f(k+1), where f(k) = sum of digits of k + sum of digits of prime factors of k (including multiplicities).

Original entry on oeis.org

7, 14, 43, 50, 61, 63, 67, 80, 84, 118, 122, 134, 137, 163, 196, 212, 213, 224, 241, 273, 274, 277, 279, 283, 351, 352, 373, 375, 390, 398, 421, 457, 462, 474, 475, 489, 495, 510, 516, 523, 526, 537, 547, 555, 558, 577, 584, 590, 592, 616, 638, 644, 660, 673, 687, 691
Offset: 1

Views

Author

Keywords

Comments

Named "Maris-McGwire-Sosa Numbers" by Keith (1998) after the baseball players Roger Maris, Mark McGwire and Sammy Sosa. Both McGwire and Sosa hit their 62nd home runs for the season, breaking Maris's record of 61 (A006145 is a similarly named sequence). - Amiram Eldar, Jun 27 2021

Examples

			(61, 62) is such a pair, hence the name.
		

Crossrefs

Cf. A006145 (Ruth-Aaron numbers), A039945.

Programs

  • Mathematica
    ds[n_] := Plus @@ IntegerDigits[n]; f[n_] := ds[n] + Total[(fi = FactorInteger[n])[[;; , 2]] *( ds /@fi[[;; , 1]])]; s={}; f1 = 1; Do[f2=f[n]; If[f1 == f2, AppendTo[s, n-1]]; f1 = f2, {n, 2, 700}]; s (* Amiram Eldar, Nov 24 2019 *)
  • Python
    from sympy import factorint
    def sd(n): return sum(map(int, str(n)))
    def  f(n): return sd(n) + sum(sd(p)*e for p, e in factorint(n).items())
    def ok(n): return f(n) == f(n+1)
    print(list(filter(ok, range(692)))) # Michael S. Branicky, Jul 14 2021

Extensions

Corrected and extended by David W. Wilson
Offset corrected by Amiram Eldar, Nov 24 2019
Showing 1-10 of 31 results. Next