cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A039753 Numbers common to A006145 and A039752.

Original entry on oeis.org

5, 77, 714, 5405, 26642, 52554, 95709, 154842, 173162, 204258, 208581, 248109, 278277, 332994, 417162, 445305, 529194, 554682, 693610, 851709, 869054, 1232746, 1252509, 1275546, 1275730, 1549454, 1600962, 1607045, 1671333, 1672710, 1777026
Offset: 1

Views

Author

Keywords

Comments

Mostly the subset of either A006145 or A039752 where both a(n) and a(n)+1 are squarefree (members of A005117), but also members of A178214. - Hans Havermann, Dec 16 2010, Dec 19 2010

Examples

			77 (7*11, with 78 = 2*3*13) is a member of both A006145 and A039752 (7+11 = 2+3+13) and so 77 is a member of this sequence.
7129199 (7*11^2*19*443, with 7129200 = 2^4*3*5^2*13*457) is a member of both A006145 (7+11+19+443 = 2+3+5+13+457) and A039752 (7+11+11+19+443 = 2+2+2+2+3+5+5+13+457) and so 7129199 is also a member of this sequence.
		

Crossrefs

A054378 Sums of prime factors of A039752, including multiplicities.

Original entry on oeis.org

5, 6, 8, 18, 15, 29, 86, 33, 32, 35, 100, 44, 45, 141, 75, 150, 160, 122, 40, 54, 39, 205, 532, 107, 79, 93, 421, 401, 193, 66, 144, 117, 149, 211, 93, 64, 57, 118, 480, 82, 299, 1242, 485, 176, 774, 152, 78, 89, 216, 72, 53, 218, 429, 587, 245, 295, 1924
Offset: 1

Views

Author

Keywords

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.

Crossrefs

A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1.

Original entry on oeis.org

5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299, 2600, 2783, 5405, 6556, 6811, 8855, 9800, 12726, 13775, 18655, 21183, 24024, 24432, 24880, 25839, 26642, 35456, 40081, 43680, 48203, 48762, 52554, 61760, 63665, 64232, 75140, 79118, 95709, 106893, 109939
Offset: 1

Views

Author

Keywords

Comments

Nelson, Penney, & Pomerance call these "Aaron numbers" because 714 is Babe Ruth's lifetime home run record, Hank Aaron's 715th home run broke this record, and 714 and 715 have the same sum of prime divisors. - David W. Wilson
Number of terms < 10^n: 1, 4, 9, 19, 40, 139, 494, 1748, 6650, ..., . - Robert G. Wilson v, Jan 23 2012

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • P. Hoffman, The Man Who Loved Only Numbers, pp. 179-181, Hyperion, NY 1998.
  • J. Roberts, Lure of Integers, pp. 250, MAA 1992.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 159-160, Penguin 1986.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n);
    for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od:
    for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od:
    # Alternative:
    SumPF := proc(n) option remember; add(NumberTheory:-PrimeFactors(n)) end:
    seq(ifelse(SumPF(n) = SumPF(n+1), n, NULL), n = 1..3000); # Peter Luschny, Jun 11 2024
  • Mathematica
    fQ[n_] := Plus @@ (First@# & /@ FactorInteger[n]) == Plus @@ (First@# & /@ FactorInteger[n + 1]); Select[ Range@ 100000, fQ] (* Robert G. Wilson v, Jan 22 2012 *)
  • PARI
    sopf(n)=my(f=factor(n));sum(i=1,#f[,1],f[i,1])
    is(n)=sopf(n)==sopf(n+1) \\ Charles R Greathouse IV, Jan 27 2012
    
  • Python
    from sympy import factorint
    def aupton(terms):
      alst, k, sopfk, sopfkp1 = [], 2, 2, 3
      while len(alst) < terms:
        if sopfkp1 == sopfk: alst.append(k)
        k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in factorint(k+2))
      return alst
    print(aupton(42)) # Michael S. Branicky, May 24 2021

A129316 Positive integers k such that sopfr(k) divides sopfr(k+1), where sopfr(k) is the sum of the prime factors of k, counting multiplicity.

Original entry on oeis.org

5, 8, 15, 77, 125, 160, 252, 496, 714, 948, 980, 1045, 1053, 1260, 1330, 1378, 1404, 1430, 1508, 1520, 1610, 1750, 1862, 1890, 2170, 2491, 2680, 2821, 3094, 3100, 3248, 3400, 3591, 3610, 3652, 3808, 4185, 4191, 4384, 4452, 4500, 4598, 4906, 5120, 5145
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Comments

A generalization of Ruth-Aaron pairs (A006145).

Examples

			a(6)=160 since sopfr(160)=sopfr(2^5*5)=10+5=15 and sopfr(161)=sopfr(7*23)=30.
		

Crossrefs

Programs

Formula

sopfr(k+1) mod sopfr(k) = 0.

A129317 The second of the pair of consecutive integers k and k+1 such that sopfr(k) divides sopfr(k+1), where sopfr(k) is the sum of the prime factors of k, counting multiplicity.

Original entry on oeis.org

6, 9, 16, 78, 126, 161, 253, 497, 715, 949, 981, 1046, 1054, 1261, 1331, 1379, 1405, 1431, 1509, 1521, 1611, 1751, 1863, 1891, 2171, 2492, 2681, 2822, 3095, 3101, 3249, 3401, 3592, 3611, 3653, 3809, 4186, 4192, 4385, 4453, 4501, 4599, 4907, 5121, 5146
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Comments

A129316 is the first element of the pair.
A generalization of Ruth-Aaron pairs (A006145).

Examples

			a(6)=161 since sopfr(160)=sopfr(2^5*5)=10+5=15 and sopfr(161)=sopfr(7*23)=30.
		

Crossrefs

Formula

sopfr(k+1) mod sopfr(k) = 0.
a(n) = A129316(n+1). - Amiram Eldar, Oct 26 2019

A129318 a(n) = sopfr(A129316(n)), where sopfr(x) is the sum of the prime factors of x, counting multiplicity.

Original entry on oeis.org

5, 6, 8, 18, 15, 15, 17, 39, 29, 86, 23, 35, 25, 22, 33, 68, 26, 31, 46, 32, 37, 24, 35, 23, 45, 100, 78, 51, 39, 45, 44, 33, 35, 45, 98, 34, 45, 141, 147, 67, 25, 43, 236, 25, 29, 75, 150, 29, 76, 125, 160, 26, 121, 122, 73, 37, 52, 56, 40, 39, 54, 58, 239, 69, 36, 39
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007, corrected Apr 09 2007

Keywords

Examples

			a(6)=15 since sopfr(A129316(6))=sopfr(160)=sopfr(2^5*5)=15.
		

Crossrefs

A129319 a(n) = sopfr(A129317(n)), where sopfr(x) is the sum of the prime factors of x, counting multiplicity.

Original entry on oeis.org

5, 6, 8, 18, 15, 30, 34, 78, 29, 86, 115, 525, 50, 110, 33, 204, 286, 62, 506, 32, 185, 120, 35, 92, 180, 100, 390, 102, 624, 450, 44, 198, 455, 180, 294, 306, 45, 141, 882, 134, 650, 86, 708, 575, 116, 75, 150, 174, 152, 375, 160, 286, 242, 122, 584, 518, 1456, 448
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Examples

			a(6)=30 since sopfr(A129317(6))=sopfr(161)=sopfr(7*23)=30.
		

Crossrefs

A006146 Sums of prime divisors of Ruth-Aaron numbers (A006145).

Original entry on oeis.org

5, 5, 7, 18, 15, 20, 44, 46, 29, 31, 50, 30, 20, 34, 75, 162, 146, 46, 14, 113, 53, 66, 333, 36, 514, 318, 43, 193, 279, 418, 30, 121, 55, 485, 200, 136, 77, 37, 211, 587, 147, 269, 477, 108, 136, 235, 185, 290, 333, 309, 493, 177, 199, 223, 641, 531, 182, 368
Offset: 1

Views

Author

Keywords

References

  • John L. Drost, Ruth/Aaron Pairs, J. Recreational Math. 28 (No. 2), 120-122.
  • Dana Mackenzie, Homage to an itinerant master, Science, vol. 275, p. 759, 1997.
  • Carol Nelson, David E. Penney, and Carl Pomerance, 714 and 715. Journal of Recreational Mathematics 7(2):87-89, 1974.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do t0 := 0; t1 := factorset(n);
    for j from 1 to nops(t1) do t0 := t0+t1[ j ]; od: s[ n ] := t0; od:
    for n from 1 to 9999 do if s[ n ] = s[ n+1 ] then lprint(n,s[ n ]); fi; od:
  • Mathematica
    Cases[Partition[(Plus@@(First@#&/@FactorInteger@#)&/@Range@100000),2,1],{a_,a_}:>a] (* Hans Rudolf Widmer, May 31 2024 *)
  • Python
    from sympy import primefactors
    def aupton(terms):
      alst, k, sopfk, sopfkp1 = [], 0, 0, 1
      while len(alst) < terms:
        k, sopfk, sopfkp1 = k+1, sopfkp1, sum(p for p in primefactors(k+1))
        if sopfkp1 == sopfk: alst.append(sopfk)
      return alst
    print(aupton(58)) # Michael S. Branicky, May 05 2021

Formula

a(n) = A008472(A006145(n)) = A008472(A006145(n) + 1). - Amiram Eldar, Nov 24 2019

A090340 Difference between the sums of the prime factors, including multiplicity, of n and those of n + 1.

Original entry on oeis.org

-2, -1, -1, -1, 0, -2, 1, 0, -1, -4, 4, -6, 4, 1, 0, -9, 9, -11, 10, -1, -3, -10, 14, -1, -5, 6, -2, -18, 19, -21, 21, -4, -5, 7, 2, -27, 16, 5, 5, -30, 29, -31, 28, 4, -14, -22, 36, -3, 2, -8, 3, -36, 42, -5, 3, -9, -9, -28, 47, -49, 28, 20, 1, -6, 2, -51, 46, -5, 12, -57, 59, -61, 34, 26, -10, 5, 0, -61, 66, 1, -31, -40, 69, -8, -23, 13
Offset: 1

Views

Author

Charles K. Layman (cklayman(AT)juno.com), Nov 25 2003

Keywords

Comments

If a(n) = 0 then n is a Ruth-Aaron number. - Andrew Slattery, Apr 15 2020

Examples

			a(24)=-1 because 24=2*2*2*3, 25=5*5 and (2+2+2+3)-(5+5)=-1.
		

Crossrefs

Cf. A001414 (sopfr), A090341, A090342, A090343.
Ruth-Aaron numbers: A039752.

Formula

a(n) = sopfr(n) - sopfr(n+1), where sopfr = A001414. - Wesley Ivan Hurt, Aug 10 2016

A001366 Maximal number of unattacked squares with n queens on n X n board (answers for n >= 17 only probable).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 7, 11, 18, 22, 30, 36, 47, 56, 72, 82, 97, 111, 132, 145, 170, 186, 216, 240, 260, 290, 324, 360, 381, 420
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Crossrefs

Showing 1-10 of 21 results. Next