A006230 Bitriangular permutations.
1, 13, 73, 301, 1081, 3613, 11593, 36301, 111961, 342013, 1038313, 3139501, 9467641, 28501213, 85700233, 257493901, 773268121, 2321377213, 6967277353, 20908123501, 62736953401, 188236026013, 564758409673, 1694375892301, 5083329003481, 15250389663613
Offset: 4
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 4..1000
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Letter to N. J. A. Sloane, Dec. 1976
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Programs
-
Maple
A006230:=-(z+1)*(6*z+1)/(z-1)/(3*z-1)/(2*z-1); # Conjectured by Simon Plouffe in his 1992 dissertation.
-
Mathematica
12*StirlingS2[n+1, 3]+1; (* Brian Parsonnet, Feb 25 2011 *) Sum[ StirlingS2[n,i] * StirlingS2[ 3,i ] * i!^2, {i,3} ]; (* alternative, Brian Parsonnet, Feb 25 2011 *)
-
PARI
Vec(x^4*(1 + x)*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^40)) \\ Colin Barker, Dec 27 2017
-
Python
# Using the Akiyama-Tanigawa algorithm for powers from A371761. print(ATPowList(3, 27)) # Peter Luschny, Apr 12 2024
Formula
a(n) = 12*S(n-2) + 1, with S(n)=A000392(n) the Stirling numbers of second kind, 3rd column. - Ralf Stephan, Jul 07 2003
From Colin Barker, Dec 27 2017: (Start)
G.f.: x^4*(1 + x)*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 12*(3 - 3*2^(n-2) + 3^(n-2))/6 + 1.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>6. (End)
Comments