cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006230 Bitriangular permutations.

Original entry on oeis.org

1, 13, 73, 301, 1081, 3613, 11593, 36301, 111961, 342013, 1038313, 3139501, 9467641, 28501213, 85700233, 257493901, 773268121, 2321377213, 6967277353, 20908123501, 62736953401, 188236026013, 564758409673, 1694375892301, 5083329003481, 15250389663613
Offset: 4

Views

Author

Keywords

Comments

Prepending the term 0 and setting the offset to 0 makes this sequence row 3 of A371761. In this form it can be generated by the Akiyama-Tanigawa algorithm for powers (see the Python script). - Peter Luschny, Apr 12 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A136301 (row 4), A371761 (row 3).

Programs

  • Maple
    A006230:=-(z+1)*(6*z+1)/(z-1)/(3*z-1)/(2*z-1); # Conjectured by Simon Plouffe in his 1992 dissertation.
  • Mathematica
    12*StirlingS2[n+1, 3]+1; (* Brian Parsonnet, Feb 25 2011 *)
    Sum[ StirlingS2[n,i] * StirlingS2[ 3,i ] * i!^2, {i,3} ]; (* alternative, Brian Parsonnet, Feb 25 2011 *)
  • PARI
    Vec(x^4*(1 + x)*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^40))
    \\ Colin Barker, Dec 27 2017
    
  • Python
    # Using the Akiyama-Tanigawa algorithm for powers from A371761.
    print(ATPowList(3, 27))  # Peter Luschny, Apr 12 2024

Formula

a(n) = 12*S(n-2) + 1, with S(n)=A000392(n) the Stirling numbers of second kind, 3rd column. - Ralf Stephan, Jul 07 2003
a(n+3) = Sum_{i=1..3} A008277(n,i) * A008277(3,i) * i!^2. - Brian Parsonnet, Feb 25 2011
From Colin Barker, Dec 27 2017: (Start)
G.f.: x^4*(1 + x)*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 12*(3 - 3*2^(n-2) + 3^(n-2))/6 + 1.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>6. (End)