cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006265 Number of shapes of height-balanced AVL trees with n nodes.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 4, 17, 32, 44, 60, 70, 184, 476, 872, 1553, 2720, 4288, 6312, 9004, 16088, 36900, 82984, 174374, 346048, 653096, 1199384, 2160732, 3812464, 6617304, 11307920, 18978577, 31327104, 51931296, 90400704, 170054336, 341729616, 711634072, 1491256624
Offset: 1

Views

Author

Keywords

Comments

An AVL tree is a complete ordered binary rooted tree where at any node, the height of both subtrees are within 1 of each other.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • This is the limit of A_k as k->inf, see F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 239, Eq 79.

Crossrefs

Column sums of A143897, A217298. - Alois P. Heinz, Mar 18 2013

Programs

  • Maple
    a:= proc(n::posint) local B; B:= proc(x,y,d,a,b) if a+b<=d then x+B(x^2+2*x*y, x, d, a+b, a) else x fi end; coeff(B(z,0,n,1,1),z,n) end: seq(a(n), n=1..40);  # Alois P. Heinz, Aug 10 2008
  • Mathematica
    a[n_] := Module[{B}, B[x_, y_, d_, a_, b_] := If[a+b <= d, x+B[x^2+2*x*y, x, d, a+b, a], x]; Coefficient[B[z, 0, n, 1, 1], z, n]]; Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)

Formula

G.f.: A(x) = B(x,0) where B(x,y) satisfies B(x,y) = x + B(x^2+2xy,x).

Extensions

More terms, formula and comment from Christian G. Bower, Dec 15 1999