A006273 Numerators of a continued fraction for (3+sqrt(13))/2.
3, 10, 1297, 2186871697, 10458512317535240383929505297
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jeffrey Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.
Programs
-
Maple
a := proc (n) option remember; if n = 1 then 10 else a(n-1)^3 + 3*a(n-1)^2 - 3 end if; end proc: seq(a(n), n = 1..5); # Peter Bala, Jan 19 2022
Formula
From Peter Bala, Jan 19 2022: (Start)
a(n) = (11/2 + 3/2*sqrt(13))^3^(n-1) + (11/2 - 3/2*sqrt(13))^3^(n-1) - 1.
a(1) = 10 and a(n) = a(n-1)^3 + 3*a(n-1)^2 - 3 for n >= 2.
a(1) = 10 and a(n) = 13*(Product_{k = 1..n-1} a(k))^2 - 3 for n >= 2.
a(n) = A006268(n-1)^2 + 1 for n >= 1.
13 - 9*Product_{n = 1..N} (1 + 2/a(n))^2 = 52/(a(N+1) + 3). Therefore
sqrt(13) = 3*(1 + 2/10) * (1 + 2/1297) * (1 + 2/2186871697) * ... The convergence is cubic: the first six factors of the product give sqrt(13) correct to more than 750 decimal places.
3/sqrt(13) = (1 - 2/(10+2)) * (1 - 2/(1297+2)) * (1 - 2/(2186871697+2)) * .... (End)