A006305 Taylor series related to one in Ramanujan's Lost Notebook.
1, 2, 4, 6, 10, 16, 25, 38, 58, 84, 122, 174, 244, 338, 465, 630, 850, 1136, 1508, 1988, 2608, 3398, 4408, 5688, 7306, 9342, 11900, 15090, 19070, 24008, 30122, 37666, 46955, 58348, 72302, 89338, 110094, 135316, 165912, 202924, 247632, 301508
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + 58*x^8 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..20000
- G. E. Andrews, Mordell integrals and Ramanujan's "Lost" Notebook, pp. 10-48 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).
Programs
-
Mathematica
Series[Sum[q^(n^2+n)/(1-q)^2 Product[(1+q^(2k))/((1-q^(2k))(1-q^(2k+1))^2), {k, 1, n}], {n, 0, 9}], {q, 0, 100}] a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k k + k) QPochhammer[ -x^2, x^2, k] / (QPochhammer[ x, x, 2 k + 1] QPochhammer[ x, x^2, k + 1] ) , {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jul 09 2015 *) nmax = 100; CoefficientList[Series[Sum[x^(k^2+k)/(1-x)^2 * Product[(1+x^(2*j))/((1-x^(2*j))*(1-x^(2*j+1))^2), {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 11 2019 *)
Formula
G.f.: Sum_{n>=0} q^(n^2+n) (1+q^2)(1+q^4)...(1+q^(2n))/((1-q)^2 (1-q^2) (1-q^3)^2 (1-q^4) ... (1-q^(2n)) (1-q^(2n+1))^2).
a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2.74858241446108527... and c = 0.1051685561271293027... - Vaclav Kotesovec, Jun 12 2019
Extensions
Corrected and extended by Dean Hickerson, Dec 13 1999