cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006307 Number of ways writing 2^n as unordered sums of 2 primes.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 3, 8, 11, 22, 25, 53, 76, 151, 244, 435, 749, 1314, 2367, 4239, 7471, 13705, 24928, 45746, 83467, 153850, 283746, 525236, 975685, 1817111, 3390038, 6341424, 11891654, 22336060, 42034097, 79287664, 149711134, 283277225, 536710100, 1018369893
Offset: 0

Views

Author

Keywords

Examples

			n = 5: 2^5 = 32 = 3+29 = 13+19 so a(5) = 2.
		

References

  • Bohman, Jan and Froberg, Carl-Erik; Numerical results on the Goldbach conjecture. Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 239-243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:=proc(n) local c,k; c:=0: for k from 1 to floor((n-1)/2) do if isprime(2*k+1)=true and isprime(2*n-2*k-1)=true then c:=c+1 else c:=c fi od end: 0,0,1,seq(a(2*2^n),n=1..15); # Emeric Deutsch, Sep 22 2004
  • PARI
    a(n)=my(N=2^n,s); forprime(q=2, N\2, s+=isprime(N-q)); s \\ Charles R Greathouse IV, Mar 02 2015

Formula

a(n) = A061358(2^n).

Extensions

More terms from David W. Wilson
a(28)-a(35) from Ray Chandler, Feb 21 2004
a(36)=79287664 and a(37)=149711134 from Ray Chandler, Apr 10 2005
a(38)-a(40) from Russ Cox, Nov 04 2006