cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006321 Royal paths in a lattice.

Original entry on oeis.org

1, 8, 48, 264, 1408, 7432, 39152, 206600, 1093760, 5813000, 31019568, 166188552, 893763840, 4823997960, 26124870640, 141926904328, 773293020928, 4224773978632, 23139861329456, 127039971696392, 698993630524032, 3853860616119048, 21288789223825648
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Fourth diagonal of A033877.

Programs

  • Maple
    1,seq(4*sum(binomial(n,j)*binomial(n+3+j,n-1),j=0..n)/n,n=1..17);
  • Mathematica
    Flatten[{1, RecurrenceTable[{n*(n+4)*a[n] == (5*n^2+14*n+21)*a[n-1] + (5*n^2-4*n+12)*a[n-2] - (n-3)*(n+1)*a[n-3], a[1] == 8, a[2] == 48,a[3] == 264}, a, {n,25}]}] (* Vaclav Kotesovec, Oct 05 2012 *)

Formula

a(n) = (4/n)*sum(binomial(n, j)*binomial(n+3+j, n-1), j=0..n) (n>0). - Emeric Deutsch, Aug 19 2004
Recurrence: n*(n+4)*a(n) = (5*n^2+14*n+21)*a(n-1) + (5*n^2-4*n+12)*a(n-2) - (n-3)*(n+1)*a(n-3). - Vaclav Kotesovec, Oct 05 2012
a(n) ~ 2*sqrt(816+577*sqrt(2))*(3+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 05 2012
G.f.: (x^4-8*x^3+16*x^2-8*x+1+sqrt(x^2-6*x+1)*(x-1)*(x^2-4*x+1))/(2*x^4). - Mark van Hoeij, Apr 16 2013

Extensions

More terms from Vincenzo Librandi, May 03 2013