A006328 Total preorders.
5, 24, 79, 223, 579, 1432, 3434, 8071, 18714, 42991, 98127, 222965, 505008, 1141236, 2574845, 5802636, 13065935, 29403439, 66141015, 148734156, 334391354, 751675943, 1689494650, 3797059555, 8533209055, 19176039925, 43091557504, 96831330948, 217586892705
Offset: 3
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,4,1,-1).
Crossrefs
A column of A079502.
Programs
-
Mathematica
CoefficientList[ Series[(5 + 4x - 2x^2 - x^3)/(1 - 4x + 3x^2 + 4x^3 - 4 x^4 - x^5 + x^6), {x, 0, 30}], x] (* Robert G. Wilson v, Mar 12 2017 *)
-
PARI
Vec(x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)) + O(x^40)) \\ Colin Barker, Mar 19 2017
Formula
From Colin Barker, Mar 19 2017: (Start)
G.f.: x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)).
a(n) = 4*a(n-1) - 3*a(n-2) - 4*a(n-3) + 4*a(n-4) + a(n-5) - a(n-6) for n>8.
(End)
Extensions
More terms from Sean A. Irvine, Mar 12 2017