A006333 From the enumeration of corners.
0, 2, 60, 660, 4290, 20020, 74256, 232560, 639540, 1586310, 3617900, 7696260, 15438150, 29451240, 53796160, 94607040, 160908264, 265670730, 427156860, 670609940, 1030350090, 1552346268, 2297341200, 3344614000, 4796473500
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Matthew House, Table of n, a(n) for n = 0..10000
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
A row of A132339.
Programs
-
Mathematica
Abs@ With[{n = 4}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* or *) {0}~Join~CoefficientList[Series[2 (1 + 20 x + 75 x^2 + 75 x^3 + 20 x^4 + x^5)/(1 - x)^10, {x, 0, 23}], x] (* Michael De Vlieger, Mar 26 2016 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,2,60,660,4290,20020,74256,232560,639540,1586310},30] (* Harvey P. Dale, Jan 01 2017 *)
-
PARI
a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560 \\ Charles R Greathouse IV, Jul 28 2015
-
PARI
x='x+O('x^99); concat(0, Vec(2*(1+20*x+75*x^2+75*x^3+20*x^4+x^5)/(1-x)^10)) \\ Altug Alkan, Mar 26 2016
Formula
a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n))/7560.
G.f.: 2*(1 + 20*x + 75*x^2 + 75*x^3 + 20*x^4 + x^5)/(1-x)^10.