cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006334 From the enumeration of corners.

Original entry on oeis.org

0, 2, 110, 2002, 20020, 136136, 705432, 2984520, 10786908, 34370050, 98768670, 260390130, 638110200, 1468635168, 3200871520, 6650874912, 13248113736, 25415833170, 47143878782, 84832157410, 148507792972, 253549890440, 423093671000, 691331713800, 1107985378500
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of A132339.

Programs

  • Mathematica
    Abs@ With[{n = 5}, Table[(2 (-1)^(n + k) (n + k - 1)! (2 n + 2 k - 3)!)/(n! k! (2 n - 1)! (2 k - 1)!), {k, 0, 24}]] (* Michael De Vlieger, Mar 26 2016 *)
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,2,110,2002,20020,136136,705432,2984520,10786908,34370050,98768670,260390130,638110200},30] (* Harvey P. Dale, Apr 21 2016 *)

Formula

a(n) = (n*(1 + n)^2*(2 + n)^2*(3 + n)^2*(4 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n))/1360800.
G.f.: -2*x*(x+1)*(x^6 + 41*x^5 + 323*x^4 + 678*x^3 + 323*x^2 + 41*x + 1)/(x-1)^13. - Colin Barker, Sep 19 2012