A006366 Number of cyclically symmetric plane partitions in the n-cube; also number of 2n X 2n half-turn symmetric alternating sign matrices divided by number of n X n alternating sign matrices.
1, 2, 5, 20, 132, 1452, 26741, 826540, 42939620, 3752922788, 552176360205, 136830327773400, 57125602787130000, 40191587143536420000, 47663133295107416936400, 95288872904963020131203520, 321195665986577042490185260608
Offset: 0
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.7) on page 198, except the formula given is incorrect. It should be as shown here.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..90
- G. E. Andrews,Plane partitions (III): the Weak Macdonald Conjecture, Invent. Math., 53 (1979), 193-225.
- P. Di Francesco, P. Zinn-Justin and J.-B. Zuber, Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops, arXiv:math-ph/0410002, 2004.
- Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
- G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001.
- W. F. Lunnon, The Pascal matrix, Fib. Quart. vol. 15 (1977) pp. 201-204.
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
- P. J. Taylor, Counting distinct dimer hex tilings, Preprint, 2015.
Programs
-
Maple
A006366 := proc(n) local i, j; mul((3*i - 1)*mul((n + i + j - 1)/(2*i + j - 1), j = i .. n)/(3*i - 2), i = 1 .. n) end;
-
Mathematica
Table[Product[(3i-1)/(3i-2) Product[(n+i+j-1)/(2i+j-1),{j,i,n}],{i,n}],{n,0,20}] (* Harvey P. Dale, Apr 17 2013 *)
-
PARI
a(n)=prod(i=0,n-1,(3*i+2)*(3*i)!/(n+i)!)
Formula
a(n) = Product_{i=1..n} (((3*i-1)/(3*i-2))*Product_{j=i..n} (n+i+j-1)/(2*i+j-1)).
a(n) ~ exp(1/36) * GAMMA(1/3)^(4/3) * n^(7/36) * 3^(3*n^2/2 + 11/36) / (A^(1/3) * Pi^(2/3) * 2^(2*n^2 + 7/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
Comments