A006383 Number of equivalence classes of n X n binary matrices when one can permute rows, permute columns and complement columns.
1, 1, 3, 7, 41, 299, 6128, 343656, 67013431, 45770163273, 108577103160005, 886929528971819040, 24943191706060101926577, 2425246700258693990625775794, 820270898724825121532156178527106
Offset: 0
Examples
a(2) = 3: 00 10 11 00 00 00
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..35 from Sean A. Irvine)
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- Index entries for sequences related to binary matrices
Extensions
Definition corrected by Brendan McKay, Jan 07 2007
Terms a(7) onward from Max Alekseyev, Feb 05 2010