A006455
Number of partial orders on {1,2,...,n} that are contained in the usual linear order (i.e., xRy => x
1, 1, 2, 7, 40, 357, 4824, 96428, 2800472, 116473461, 6855780268, 565505147444, 64824245807684
Offset: 0
Examples
a(3) = 7: {}, {1R2}, {1R3}, {2R3}, {1R2, 1R3}, {1R3, 2R3}, {1R2, 1R3, 2R3}.
References
- N. B. Hindman, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- S. P. Avann, The lattice of natural partial orders, Aequationes Mathematicae 8 (1972), 95-102.
- David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
- Graham Brightwell, Hans Jürgen Prömel and Angelika Steger, The average number of linear extensions of a partial order, Journal of Combinatorial Theory A73 (1996), 193-206.
- S. R. Finch, Transitive relations, topologies and partial orders
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- L. H. Harper, The Range of a Steiner Operation, arXiv preprint arXiv:1608.07747 [math.CO], 2016.
- N. Hindman and N. J. A. Sloane, Correspondence, 1981-1991
- Florent Hivert and Nicolas M. Thiéry, Controlling the C3 Super Class Linearization Algorithm for Large Hierarchies of Classes, Order (2022).
- Adam King, A. Laubmeier, K. Orans, and A. Godbole, Universal and Overlap Cycles for Posets, Words, and Juggling Patterns, arXiv preprint arXiv:1405.5938 [math.CO], 2014.
- D. E. Knuth, POSETS, program for n = 10, 11, 12.
- J.-G. Luque, L. Mignot and F. Nicart, Some Combinatorial Operators in Language Theory, arXiv preprint arXiv:1205.3371 [cs.FL], 2012. - _N. J. A. Sloane_, Oct 22 2012
- Index entries for sequences related to posets
Formula
E.g.f.: exp(S(x)-1) where S(x)is the e.g.f. for A323502. - Ludovic Schwob, Mar 29 2024
Extensions
Additional comments and more terms from Don Knuth, Dec 03 2001
Comments