A006460 Image of n after 3k iterates of '3x+1' map (k large).
1, 2, 2, 4, 4, 4, 2, 1, 2, 1, 4, 1, 1, 4, 4, 2, 1, 4, 4, 2, 2, 1, 1, 2, 4, 2, 1, 1, 1, 1, 2, 4, 4, 2, 2, 1, 1, 1, 2, 4, 2, 4, 4, 2, 2, 2, 4, 4, 1, 1, 1, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 1, 1, 1, 1, 4, 4, 4, 1, 2, 2, 2, 4, 2, 2, 4, 4, 1, 2, 4, 4, 1, 1, 1, 1, 4, 1, 4, 4, 4, 4, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 4
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, E16.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- M. Elia, Letter to N. J. A. Sloane, Jun. 1981
- J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
a006460 = f 0 where f k x | mod k 3 == 0 && x `elem` [1, 2, 4] = x | otherwise = f (k+1) (a006370 x) -- Reinhard Zumkeller, Nov 16 2013
-
Mathematica
f[n_] := If[EvenQ[n], n/2, 3 n + 1]; a[n_] := With[{ff = NestWhileList[f, n, {#1, #2, #3} != {4, 2, 1}&, 3]}, ff[[Switch[Mod[Length[ff], 3], 0, -3, 1, -1, 2, -2]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Aug 08 2022 *)
Formula
For n > 2: a(n) = 4 if L = 0, otherwise L, where L = A139399(n) mod 3. - Reinhard Zumkeller, Nov 16 2013
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001