cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006473 a(n) = binomial(n,2)!/n!.

Original entry on oeis.org

1, 30, 30240, 1816214400, 10137091700736000, 7561714896123855667200000, 1025113885554181044609786839040000000, 32964677266721834921175915315161407370035200000000, 318071672921132854486459356650996997744817246158245068800000000000
Offset: 3

Views

Author

Keywords

Comments

a(n) is also the number of distinct possible (n-1)-dimensional simplices if the (n-1)*n/2 1-faces are given (up to symmetry, rotation, reflection). - Dan Dima, Nov 03 2011
a(n) is also the number of edge labelings of the complete graph on n vertices. - Nikos Apostolakis, Jul 09 2013

Examples

			a(3)=1 since there is one possible triangle if the 3 edges are given and a(4)=30 since there are 30 distinct possible tetrahedra if the 6 edges are given. - _Dan Dima_, Nov 03 2011
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Binomial[n,2]!/n!,{n,3,20}] (* Harvey P. Dale, May 08 2013 *)