A006533 Place n equally-spaced points around a circle and join every pair of points by a chord; this divides the circle into a(n) regions.
1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 6196, 6842, 9109, 9048, 12951, 14014, 17902, 19208, 24158, 21510, 31931, 33888, 41449, 43826, 52956, 52992, 66712, 70034, 82993, 86840, 102091, 97776, 124314, 129448, 149986, 155894, 179447, 179280
Offset: 1
References
- Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- M. F. Hasler, Interactive illustration of A006561(n) & A006533(n); colored version for n=6 and for n=8.
- Sascha Kurz, m-gons in regular n-gons
- J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975
- Burkard Polster (Mathologer), The hardest "What comes next?" (Euler's pentagonal formula), Youtube video, Oct 17 2020.
- Bjorn Poonen and Michael Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, No. 1 (1998), pp. 135-156. (Author's copy.).
- Bjorn Poonen and Michael Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG]; some typos in the published version are corrected in the revisions from 2006.
- Bjorn Poonen and Michael Rubinstein, Mathematica programs for these sequences
- Michael Rubinstein, Drawings for n=4,5,6,...
- Prasad Balakrishnan Warrier, The physiognomy of the Erdős-Szekeres conjecture (happy ending problem), Math. Student (Indian Math. Soc., 2024) Vol. 93, Nos. 3-4, 28-48.
- Sequences formed by drawing all diagonals in regular polygon
Crossrefs
Programs
-
Mathematica
del[m_,n_]:=If[Mod[n,m]==0,1,0]; R[n_]:=(n^4-6n^3+23n^2-18n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n; Table[R[n], {n,1,1000}] (* T. D. Noe, Dec 21 2006 *)
-
PARI
apply( {A006533(n)=if(n%2, (((n-6)*n+23)*n-18)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 19, 28) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
-
Python
def d(n,m): return not n % m def A006533(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 36*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
Formula
Extensions
Added more terms from b-file. - N. J. A. Sloane, Jan 23 2020
Edited definition. - N. J. A. Sloane, Mar 17 2024
Comments