cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006534 Number of one-sided triangular polyominoes (n-iamonds) with n cells; turning over not allowed, holes are allowed.

Original entry on oeis.org

1, 1, 1, 4, 6, 19, 43, 120, 307, 866, 2336, 6588, 18373, 52119, 147700, 422016, 1207477, 3471067, 9999135, 28893560, 83665729, 242826187, 706074369, 2056870697, 6001555275, 17538335077, 51323792789, 150390053432, 441210664337, 1295886453860, 3810208448847, 11214076720061, 33035788241735
Offset: 1

Views

Author

Keywords

Comments

The figures are formed by connecting n regular triangles by edges.
"Turning over not allowed" means that axial symmetric polyiamonds are counted separately, thus a(4) = 4 and a(5) = 6 while A000577(4) = 3 and A000577(5) = 4, cf. examples. - M. F. Hasler, Nov 12 2017

Examples

			From _M. F. Hasler_, Nov 12 2017: (Start)
Putting dots for the approximate center of the regular triangles (alternatively flipped up and down for neighboring dots), we have:
a(4) = #{ .... , .:. , ..: , :.. } = 4, while ..: and :.. are considered equivalent and not counted twice in A000577(4) = 3.
a(5) = #{ ..... , ...: , :... , ..:. , .:.. , :.: } = 6, and again the 2nd & 3rd and 4th & 5th are considered equivalent and not counted twice in A000577(5) = 4. (End)
		

References

  • F. Harary, Graphical enumeration problems; in Graph Theory and Theoretical Physics, ed. F. Harary, Academic Press, London, 1967, pp. 1-41.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. J. Torbijn, Polyiamonds, J. Rec. Math. 2 (1969), 216-227.

Crossrefs

Cf. A000577 (same with "turning over allowed"), A030223, A030224, A001420.

Extensions

Corrected and extended by David W. Wilson
a(19) from Achim Flammenkamp, Feb 15 1999
a(20) to a(28) from Joseph Myers, Sep 24 2002
Edited by M. F. Hasler, Nov 12 2017
More terms from John Mason, Oct 28 2023