cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006569 Numerators of generalized Bernoulli numbers.

Original entry on oeis.org

1, -1, 1, 1, -1, -5, -1, 7, 13, -307, -479, 1837, 100921, 15587, -23737, -5729723, 14731223, 9129833, 2722952839, -4700745901, -1556262845, 190717213397, 24684889339847, -50242799489, -148437433077277, -8592042383621, 221844330989749, 176585172615885307, -9245931549625447
Offset: 0

Views

Author

Keywords

References

  • F. T. Howard, A sequence of numbers related to the exponential function, Duke Math. J., 34 (1967), 599-615.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    eq:=n->bernoulli(n+1)=a[n+1]-sum(binomial(n+1,r)*bernoulli(r)*a[n+2-r],r=1..n+1): a[0]:=1:for n from 0 to 28 do a[n+1]:=solve(eq(n),a[n+1]) od: seq(numer(a[n]),n=0..29); # Emeric Deutsch, Jan 23 2005
  • Mathematica
    rows = 29; M = Table[If[n-1 <= k <= n, 0, Binomial[n, k]], {n, 2, rows+1}, {k, 0, rows-1}] // Inverse;
    M[[All, 1]] // Numerator (* Jean-François Alcover, Jul 14 2018 *)
  • Sage
    def A006569_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (k+2)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).numerator())
        return R
    print(A006569_list(29)) # Peter Luschny, Feb 20 2016

Formula

Recurrence relation: Bernoulli(n+1) = a(n+1) - Sum_{r=1..n+1} binomial(n+1, r)*Bernoulli(r)*a(n+2-r); a(0)=1 (p. 603 of the Howard reference). - Emeric Deutsch, Jan 23 2005
E.g.f. for fractions: x^2/2 / (e^x-1-x). - Franklin T. Adams-Watters, Nov 04 2009

Extensions

More terms from Emeric Deutsch, Jan 23 2005