cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006634 From generalized Catalan numbers.

Original entry on oeis.org

1, 9, 72, 570, 4554, 36855, 302064, 2504304, 20974005, 177232627, 1509395976, 12943656180, 111676661460, 968786892675, 8445123522144, 73940567860896, 649942898236596, 5733561315124260, 50744886833898400, 450461491952952690, 4009721145437152530, 35782256673785401065
Offset: 0

Views

Author

Keywords

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    series(RootOf(g = 1+x*g^4,g)^9, x=0, 30); # Mark van Hoeij, Apr 22 2013
  • Mathematica
    f[x_] := HypergeometricPFQ[ {9/4, 5/2, 11/4, 3}, {10/3, 11/3, 4}, 256/27*x]; Series[f[x], {x, 0, 16}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 23 2013, after Simon Plouffe *)
  • PARI
    N = 3*66;  x = 'x + O('x^N);
    g=serreverse(x-x^4)/x;
    gf=g^9;  v=Vec(gf);
    vector(#v\3,n,v[3*n-2])
    /* Joerg Arndt, Apr 23 2013 */

Formula

G.f.: 4F3([9/4, 5/2, 11/4, 3],[10/3, 11/3, 4],256/27*x). - Simon Plouffe, Master's Thesis, UQAM, 1992
G.f.: g^9 where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Apr 22 2013

Extensions

More terms from Joerg Arndt, Apr 23 2013