cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006784 Engel expansion of Pi.

Original entry on oeis.org

1, 1, 1, 8, 8, 17, 19, 300, 1991, 2492, 7236, 10586, 34588, 63403, 70637, 1236467, 5417668, 5515697, 5633167, 7458122, 9637848, 9805775, 41840855, 58408380, 213130873, 424342175, 2366457522, 4109464489, 21846713216, 27803071890, 31804388758, 32651669133
Offset: 1

Views

Author

Keywords

Comments

Definition of Pierce expansion: for a real number x (0i>0 such that x = 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4) ... This expansion can be computed as follows: let u(1)=1/x and u(k+1) = u(k)/(u(k)-floor(u(k))); then a(n)=floor(u(n)). - _Benoit Cloitre, Mar 14 2004 [corrected by Jason Yuen, Dec 29 2024]

Examples

			1/1 + 1/1 + 1/1 + 1/8 + 1/(8*8) + 1/(8*8*17) <= Pi < 1/1 + 1/1 + 1/1 + 1/8 + 1/(8*8) + 1/(8*8*16), so a(6) = 17. - _Peter Munn_, Aug 14 2022
		

References

  • P. Deheuvels, L'encadrement asymptotique des éléments de la série d'Engel d'un nombre réel, C. R. Acad. Sci. Paris, 295 (1982), 21-24.
  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
  • A. Renyi, A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 5 (1962), 25-32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a(n):=proc(s)
    local
    i, j, max, aa, bb, lll, prod, S, T, kk;
        S := evalf(abs(s));
        max := 10^(Digits - 10);
        prod := 1;
        lll := [];
        while prod <= max do
            T := 1 + trunc(1/S);
            S := frac(S*T);
            lll := [op(lll), T];
            prod := prod*T
        end do;
        RETURN(lll)
    end: # Simon Plouffe, Apr 24 2016
  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ]], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[[ 1 ]]#[[ 2 ]]-1 ]], Expand[ #[[ 1 ]]#[[ 2 ]]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ]]
    EngelExp[ N[ Pi, 500000], 27]

Formula

Definition of Engel expansion: For a positive real number x (here Pi), define 1 <= a(1) <= a(2) <= a(3) <= ... so that x = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... by x(1)=x, a(n) = ceiling(1/x(n)), x(n+1) = x(n)a(n)-1. Expansion always exists and is unique. See references for more information.

Extensions

More terms from Olivier Gérard, Jul 10 2001