A006842 Triangle read by rows: row n gives numerators of Farey series of order n.
0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 3, 2, 5, 3, 4, 5, 6, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 4, 1, 5, 4, 3, 5, 2, 5, 3, 7, 4, 5, 6, 7, 8, 1
Offset: 1
Examples
0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1; ... = A006842/A006843
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923. See Vol. 1.
- Guthery, Scott B. A motif of mathematics. Docent Press, 2011.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
- W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
- A. O. Matveev, Farey Sequences, De Gruyter, 2017.
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10563
- Maxim Bruckheimer and Abraham Arcavi, Farey series and Pick’s area theorem, The Mathematical Intelligencer, 17.4 (1995): 64-67.
- Cristian Cobeli and Alexandru Zaharescu, The Haros-Farey sequence at two hundred years, Acta Univ. Apulensis Math. Inform 5 (2003): 1-38.
- Andrey O. Matveev, Neighboring Fractions in Farey Subsequences, arXiv:0801.1981 [math.NT], 2008-2010.
- Andrey O. Matveev, Farey Sequences: Errata + Haskell code
- N. J. A. Sloane, Stern-Brocot or Farey Tree
- Eric Weisstein's World of Mathematics, Farey Sequence.
- Index entries for sequences related to Stern's sequences
Crossrefs
Programs
-
Maple
Farey := proc(n) sort(convert(`union`({0},{seq(seq(m/k,m=1..k),k=1..n)}),list)) end: seq(numer(Farey(i)),i=1..5); # Peter Luschny, Apr 28 2009
-
Mathematica
Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Numerator[ Farey[n]], {n, 0, 9}]] (* Robert G. Wilson v, Apr 08 2004 *) Table[FareySequence[n] // Numerator, {n, 1, 9}] // Flatten (* Jean-François Alcover, Sep 25 2018 *)
-
PARI
row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k););); vf = vecsort(Set(vf)); for (i=1, #vf, print1(numerator(vf[i]), ", "));} \\ Michel Marcus, Jun 27 2014
Extensions
More terms from Robert G. Wilson v, Apr 08 2004