cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006842 Triangle read by rows: row n gives numerators of Farey series of order n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 3, 2, 5, 3, 4, 5, 6, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 4, 1, 5, 4, 3, 5, 2, 5, 3, 7, 4, 5, 6, 7, 8, 1
Offset: 1

Views

Author

Keywords

Examples

			0/1, 1/1;
0/1, 1/2, 1/1;
0/1, 1/3, 1/2, 2/3, 1/1;
0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1;
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1;
... = A006842/A006843
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923. See Vol. 1.
  • Guthery, Scott B. A motif of mathematics. Docent Press, 2011.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • A. O. Matveev, Farey Sequences, De Gruyter, 2017.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n has A005728(n) terms. - Michel Marcus, Jun 27 2014
Cf. A006843 (denominators), A049455, A049456, A007305, A007306. Also A177405/A177407.

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0},{seq(seq(m/k,m=1..k),k=1..n)}),list)) end: seq(numer(Farey(i)),i=1..5); # Peter Luschny, Apr 28 2009
  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Numerator[ Farey[n]], {n, 0, 9}]] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[FareySequence[n] // Numerator, {n, 1, 9}] // Flatten (* Jean-François Alcover, Sep 25 2018 *)
  • PARI
    row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k););); vf = vecsort(Set(vf)); for (i=1, #vf, print1(numerator(vf[i]), ", "));} \\ Michel Marcus, Jun 27 2014

Extensions

More terms from Robert G. Wilson v, Apr 08 2004