A006851 Trails of length n on honeycomb lattice.
1, 3, 6, 12, 24, 48, 96, 186, 360, 696, 1344, 2562, 4872, 9288, 17664, 33384, 63120, 119280, 225072, 423630, 797400, 1499256, 2817216, 5286480, 9918768, 18592080, 34840848, 65228874, 122105496, 228402168, 427176336, 798373662, 1491985800, 2786515176, 5203816992, 9712725234, 18127267800
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..43
- H. Duminil-Copin and S. Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt(2)), arXiv:1007.0575 [math-ph], 2010-2011.
- A. J. Guttmann, Lattice trails II: numerical results, J. Phys. A 18 (1985), 575-588.
Crossrefs
Cf. A001668.
Programs
-
Maple
a:= proc(n) option remember; local v, b; if n<2 then return 1 +2*n fi; v:= proc() false end: v(1, 0):= true; b:= proc(n, d, x, y) local c; if v(x, y) then `if`(n>0 or [x, y, d]=[1, 0, 1], 0, 1) elif n=0 then 1 else v(x, y):= true; c:= b(n-1, [$2..6, 1][d], x+[0, -1, -1, 0, 1, 1][d], y+[1, 1, 0, -1, -1, 0][d])+ b(n-1, [6, $1..5][d], x+[1, 1, 0, -1, -1, 0][d], y+[-1, 0, 1, 1, 0, -1][d]); v(x, y):= false; c fi end; 6*b(n-2, 2, 1, 1) end: seq(a(n), n=0..20); # Alois P. Heinz, Jul 08 2011
-
Mathematica
a[n_] := a[n] = Module[{v, b}, If[n<2, Return[1+2*n]]; v[, ] = False; v[1, 0] = True; b[n0_, d_, x_, y_] := Module[{c}, Which[v[x, y], If[n0>0 || {x, y, d} == {1, 0, 1}, 0, 1], n0 == 0, 1, True, v[x, y] = True; c = b[n0-1, {2, 3, 4, 5, 6, 1}[[d]], x+{0, -1, -1, 0, 1, 1}[[d]], y+{1, 1, 0, -1, -1, 0}[[d]]] + b[n0-1, {6, 1, 2, 3, 4, 5}[[d]], x+{1, 1, 0, -1, -1, 0}[[d]], y+{-1, 0, 1, 1, 0, -1}[[d]]]; v[x, y] = False; c]]; 6*b[n-2, 2, 1, 1]]; Table[Print[a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)