cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A288376 Primes of the form k!2+2, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

3, 5, 17, 107, 947, 13749310577, 316234143227, 213458046676877, 495179769008019818390136611716089140627, 13114900840751548972796135496384318234575359262373046877, 28352254429826839019508359891905756542124154226667992913078222750278633810791015627
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076815.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 2, {i, 0, 100}], PrimeQ[#]&]

A288405 Primes of the form k!2+4, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

5, 7, 19, 109, 10399, 34459429, 6190283353629379, 319830986772877770815629, 563862029680583509947946879, 174865344543353986303948473285124243127671456831640629, 2987435000850314871976096554696085799164511452611632783323554397412109379
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076186.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 4, {i, 0, 100}], PrimeQ[#]&]

A288406 Primes of the form k!2+8, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

11, 23, 113, 953, 2027033, 34459433, 7905853580633, 13113070457687988603440633, 112275575285571389562324404930670903477890633, 79777941814291672401518892224505807820921910393015244140633
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076188.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 8, {i, 0, 100}], PrimeQ[#]&]
    Select[Range[100]!!+8,PrimeQ] (* Harvey P. Dale, May 05 2019 *)

A288407 Primes of the form k!2+16, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

17, 19, 31, 135151, 34459441, 7905853580641, 213458046676891, 319830986772877770815641, 25373791335626257947657609391, 1192568192774434123539907640641, 157952079428395476360490147277859391
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076189.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 16, {i, 0, 100}], PrimeQ[#]&]

A288408 Primes of the form k!2+32, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

47, 137, 977, 10427, 2027057, 13749310607, 6332659870762850657, 13113070457687988603440657, 563862029680583509947946907, 25373791335626257947657609407, 488960130368663401543922783473071784646213671907
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076190.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 32, {i, 0, 100}], PrimeQ[#]&]

A288409 Primes of the form k!2+64, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

67, 79, 1009, 10459, 34459489, 654729139, 316234143289, 2980227913743310874726229193921939
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Comments

The next term has 211 digits. - Harvey P. Dale, Feb 07 2019

Crossrefs

Cf. A076193.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 64, {i, 0, 100}], PrimeQ[#]&]
    Select[Range[100]!!+64,PrimeQ] (* Harvey P. Dale, Feb 07 2019 *)

A288410 Primes of the form k!2+128, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

131, 233, 34459553, 654729203, 191898783962510753, 563862029680583509947947003, 2980227913743310874726229193922003
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Comments

The next term (a(8)) has 147 digits. - Harvey P. Dale, Apr 09 2020

Crossrefs

Cf. A076194.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 128, {i, 0, 100}], PrimeQ[#]&]
    Select[Range[100]!!+128,PrimeQ] (* Harvey P. Dale, Apr 09 2020 *)

A288411 Primes of the form k!2+256, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

257, 271, 1201, 10651, 135391, 316234143481, 49988475139107080748861383849035044804037186461213252284425520655249250725695020643146597883951938106998443603515881
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Comments

The next term has 174 digits. - Harvey P. Dale, Mar 09 2018

Crossrefs

Cf. A076195.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 256, {i, 0, 100}], PrimeQ[#]&]
    Select[Range[200]!!+256,PrimeQ] (* Harvey P. Dale, Mar 09 2018 *)

A288412 Primes of the form k!2+512, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

617, 135647, 2027537, 654729587, 7905853581137, 370285001030422820361936176659518850400275455268246313217966819668512968338481634393678502844088430422210693359887
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076196.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 512, {i, 0, 100}], PrimeQ[#]&]

A288413 Primes of the form k!2+1024, where k!2 is the double factorial number (A006852).

Original entry on oeis.org

1039, 1129, 13749311599, 6332659870762851649, 1408316897580354679543222894676508168024833284165925995774150107832775465649821970462037757921294414350725483019407292942600250244141649
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Cf. A076197.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] + 1024, {i, 0, 100}], PrimeQ[#]&]
Showing 1-10 of 19 results. Next