A006991 Primitive congruent numbers.
5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 101, 102, 103, 109, 110, 111, 118, 119, 127, 133, 134, 137, 138, 141, 142, 143, 145, 149, 151, 154, 157, 158, 159
Offset: 1
Keywords
Examples
6 is congruent because 6 is the area of the right triangle with sides 3,4,5. It is a primitive congruent number because it is squarefree.
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 155.
- R. K. Guy, Unsolved Problems in Number Theory, D27.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Primitive congruent numbers up to 10000; table of n, a(n) for n = 1..3503
- R. Alter and T. B. Curtz, A note on congruent numbers, Math. Comp., 28 (1974), 303-305 and 30 (1976), 198.
- American Institute of Mathematics, A trillion triangles
- Jose Aranda, C++ program
- B. Cipra, Tallying the class of congruent numbers, ScienceNOW, Sep 23 2009.
- Clay Mathematics Institute, The Birch and Swinnerton-Dyer Conjecture
- Keith Conrad, The Congruent Number Problem, The Harvard College Mathematics Review, 2008.
- Department of Pure Maths., Univ. Sheffield, Pythagorean triples and the congruent number problem
- A. Dujella, A. S. Janfeda, and S. Salami, A Search for High Rank Congruent Number Elliptic Curves, JIS 12 (2009) 09.5.8.
- Hisanori Mishima, 361 Congruent Numbers g: 1<=g<=999
- Giovanni Resta, Congruent numbers Primitive congruent numbers up to 10^7.
- Karl Rubin, Elliptic curves and right triangles
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
- Wikipedia, Congruent number
- R. G. Wilson v, Letter to N. J. A. Sloane, Oct. 1993
Programs
-
Mathematica
(* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses functions from A072068. *) For[lst={}; n=1, n<=maxN, n++, If[SquareFreeQ[n], If[(EvenQ[n]&&soln3[[n/2]]==2soln4[[n/2]])|| (OddQ[n]&&soln1[[(n+1)/2]]==2soln2[[(n+1)/2]]), AppendTo[lst, n]]]]; lst (* The following self-contained Mathematica code also assumes the truth of the Birch and Swinnerton-Dyer conjecture. *) CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[! SquareFreeQ[n], Null[], MemberQ[{5, 6, 7}, Mod[n, 8]], ok = True, OddQ@n&&Length@Solve[x^2+2y^2+8z^2==n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ@n&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@ Solve[x^2 + 4 y^2 + 32 z^2 == n/2, {x, y, z}, Integers], ok=True]; ok)]; Select[Range[200], CongruentQ] (* Frank M Jackson, Jun 06 2016 *)
Extensions
More terms from T. D. Noe, Feb 26 2003
Comments