A006998 Partitioning integers to avoid arithmetic progressions of length 3.
0, 1, 2, 4, 6, 8, 12, 14, 16, 24, 26, 28, 32, 40, 48, 52, 54, 56, 64, 72, 80, 96, 100, 104, 108, 110, 112, 128, 136, 144, 160, 176, 192, 200, 204, 208, 216, 218, 220, 224, 240, 256, 272, 280, 288, 320, 336, 352, 384, 392, 400, 408, 412, 416, 432, 434, 436, 440
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Joseph Gerver, James Propp and Jamie Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions Proc. Amer. Math. Soc., Vol. 102, No. 3 (1988), 765-772.
- James Propp and N. J. A. Sloane, Email, March 1994
Programs
-
PARI
for (n=1, #a=vector(58), print1 (a[n]=if (n<=2, n-1, a[1+((2*n-2)\3)]+a[1+((2*n-1)\3)])", ")) \\ Rémy Sigrist, Jun 10 2021
Formula
a(n) = a([ 2n/3 ]) + a([ (2n+1)/3 ]).
Extensions
More terms from Rémy Sigrist, Jun 10 2021