cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007003 Euler transform of numbers of preferential arrangements.

Original entry on oeis.org

1, 2, 5, 19, 97, 658, 5458, 53628, 606871, 7766312, 110811174, 1743359979, 29972475254, 558940415943, 11235765584497, 242168565186139, 5570683131749362, 136215122718876230, 3527978807819506487, 96480528944412962039, 2778048842021042988465
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: f:= proc(n) option remember; local k; if n<=1 then 1 else add(binomial(n, k) *f(n-k), k=1..n) fi end: aa:= etr(k->f(k-1)): a:= n->aa(n+1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; f[n_] := f[n] = If[n <= 1, 1, Sum[Binomial[n, k]*f[n-k], {k, 1, n}]]; aa := etr[f[#-1]&]; a[n_] := aa[n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

Formula

a(n) ~ n! / (2*(log(2))^(n+1)). - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Sep 08 2008