cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007043 Number of noncommutative SL(2,C)-invariants of degree n in 5 variables.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 65, 260, 1085, 4600, 19845, 86725, 383251, 1709566, 7687615, 34812519, 158614405, 726612216, 3344696501, 15462729645, 71763732545, 334236300200, 1561686608685, 7318223046860, 34386154568375, 161970182441556, 764676831501575, 3617755131480841
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A348210 (column k=2).

Programs

  • Maple
    F := (t^2+3*t+1)/((t+1)*(4*t+1)^(1/2)); G := t/(t^2+3*t+1); Ginv := RootOf(numer(G-x),t);  ogf := series(eval(F,t=Ginv),x=0,20); # Mark van Hoeij, Oct 30 2011
  • Mathematica
    CoefficientList[Series[Sqrt[2]/Sqrt[(1 - x)*((1 + 5*x) + Sqrt[(1 - 5*x)*(1 - x)])], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 24 2016, after Almkvist, Dicks and Formanek *)
    a[n_]:= c[0, n, 2]-c[1, n, 2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)

Formula

From Paul Barry, Oct 18 2007: (Start)
a(n) = Sum{k=0..n} Sum{j=0..k} C(n,k)*C(k,j)*(-3)^(k-j)*A000108(j);
a(n) = (1/(2*Pi))*Integral_{x=0..4} (1 - 3*x + x^2)^n*sqrt(x*(4 - x))/x dx. (End)
G.f.: F(G^(-1)(x)), where F(t) := (t^2 + 3*t + 1)/((t + 1)*(4*t + 1)^(1/2)) and G(t) := t/(t^2 + 3*t + 1). - Mark van Hoeij, Oct 30 2011
a(n) ~ 5^n/(8*sqrt(Pi)*n^(3/2)) * (1 - 15/(16*n) + O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence: 2*n*(2*n + 1)*(3*n - 5)*a(n) = (n-1)*(3*n - 2)*(19*n - 20)*a(n-1) + 10*(n-1)*n*(3*n - 5)*a(n-2) - 25*(n-2)*(n-1)*(3*n - 2)*a(n-3). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*Integral_{x=0..2*Pi} (sin(5*x)/sin(x))^n*(sin(x))^2. - Thomas Curtright, Jun 24 2016