A007058 Let S denote the palindromes in the language {0,1,2,3,4}*; a(n) = number of words of length n in the language SS.
1, 5, 25, 65, 265, 605, 2125, 4345, 14665, 27965, 93025, 171825, 559645, 1015565, 3276725, 5857865, 18734665, 33203045, 105436225, 185546785, 585842065, 1025381485, 3222484125, 5615234265, 17577530845, 30517575605, 95213827825, 164794865465, 512692025285, 885009765485, 2746575977125
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234.
Programs
-
Maple
See A007055.
-
Python
from functools import lru_cache from sympy import totient, proper_divisors @lru_cache(maxsize=None) def A007058(n): return (n*5**(1+(n>>1)) if n&1 else 3*n*5**(n>>1))-sum(totient(n//d)*A007058(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024
Formula
a(n) = A187275(n) - Sum_{d|n,dSean A. Irvine, Sep 27 2017
Extensions
Entry revised by N. J. A. Sloane, Mar 07 2011