cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A322379 Triangle T(s,d) read by rows: the number of 2-connected labeled cubic graphs with s simple edges and d double edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 0, 0, 120, 0, 0, 0, 0, 5040, 0, 0, 180, 0, 0, 362880, 1, 0, 0, 23520, 0, 0, 39916800, 0, 180, 0, 0, 3628800, 0, 0, 6227020800, 0, 0, 45360, 0, 0, 718502400, 0, 0, 1307674368000, 70, 0, 0, 13003200, 0, 0, 181621440000, 0, 0, 355687428096000, 0, 45360, 0, 0, 4340952000, 0, 0, 57537672192000, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Dec 05 2018

Keywords

Examples

			The triangle starts
  0;
  0, 0;
  0, 0,  6;
  0, 0,  0,   120;
  0, 0,  0,     0, 5040;
  0, 0,180,     0,    0, 362880;
  1, 0,  0, 23520,    0,      0, 39916800;
		

Crossrefs

Cf. A009445 (diagonal), A007099 (left column).

Programs

  • Maple
    # expand g(s,d) of eq (21) of Chae et al.
    g2x := 6*x^5/4! ;
    for itr from 1 to 16 do
        g2xx := expand(diff(g2x,x)) ;
        g2x := (x^5-x^8)*g2x*g2xx+(x^4-2*x^7+x^10+x^5*y-x^8*y)/2*g2xx
            +(2*x^4+x^7)*g2x^2
            +(8*x^3-6*x^6-x^9+x^12+2*x*y-2*x^4*y+8*x^7*y-2*x^10*y)/2*g2x
            + x^5/4 -3*x^8/4 +3*x^11/4-x^14/4 +3*x^6*y/2-9*x^9*y/4+3*x^12*y/4+x*y^2/2
            -x^4*y^2+7*x^7*y^2/4-x^10*y^2/2 ;
        g2x := expand(%) ;
        g2x := taylor(g2x,x=0,itr+5) ;
        g2x := convert(g2x,polynom) ;
        g2 := expand(int(g2x,x)) ;
        for s from 0 to itr+1 do
            g := coeftayl(g2,x=0,s) ;
            for d from 0 to s do
                twon := (2*s+4*d)/3 ;
                coeftayl(g,y=0,d) ;
                printf("%a,",%*twon!) ;
            end do:
            printf("\n") ;
        end do:
    end do:

Formula

T(3s,0) = A007099(s).
Showing 1-1 of 1 results.