cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123546 Triangle read by rows: T(n,k) = number of unlabeled graphs on n nodes with degree >= 3 at each node (n >= 1, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 18, 30, 34, 29, 17, 9, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 35, 136, 309, 465, 505, 438, 310, 188, 103, 52, 23
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Examples

			Triangle begins:
n = 0
k = 0 : 0
************************* total (n = 0) = 0
n = 1
k = 0 : 0
************************* total (n = 1) = 0
n = 2
k = 0 : 0
k = 1 : 0
************************* total (n = 2) = 0
n = 3
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
************************* total (n = 3) = 0
n = 4
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
k = 4 : 0
k = 5 : 0
k = 6 : 1
************************* total (n = 4) = 1
n = 5
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
k = 4 : 0
k = 5 : 0
k = 6 : 0
k = 7 : 0
k = 8 : 1
k = 9 : 1
k = 10 : 1
************************* total (n = 5) = 3
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A007111. Cf. A007112, A123545.

A324670 Number of simple graphs on n unlabeled nodes with minimum degree exactly 2.

Original entry on oeis.org

0, 0, 1, 2, 8, 43, 360, 4869, 113622, 4605833, 325817259, 40350371693, 8825083057727, 3447229161054412, 2432897732375453872, 3135299553791882831175, 7445569254636418368355175, 32831169277561326131677454356, 270499962116368309216399255404116
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2019

Keywords

Crossrefs

Column k=2 of A294217.
A diagonal of A263293.

Formula

a(n) = A261919(n) - A007111(n).
Showing 1-2 of 2 results.