cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007152 Evolutionary trees of magnitude n.

Original entry on oeis.org

1, 1, 4, 28, 301, 4466, 84974, 1974904, 54233540, 1718280152, 61695193880, 2475688513024, 109797950475448, 5333253012414224, 281576039542538368, 16055279332196218624, 983264280857581866112, 64369946360185677026048, 4485859513184032011682304, 331558482325457407154881024
Offset: 1

Views

Author

Keywords

References

  • L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007151.

Programs

  • Maple
    Q  := proc(n)
        option remember ;
        if n <= 1 then
            0;
        else
            A007151(n)-A007151(n-1) +(n-1)*procname(n-1) ; # eq (3.5)
            %/2 ;
        end if;
    end proc:
    A007152 := proc(n)
        if n = 1 then
            1;
        else
            A007151(n-1)+Q(n-1) ; # eq (3.9)
        end if ;
    end proc:
    seq(A007152(n),n=1..20 ); # R. J. Mathar, Mar 19 2018
  • Mathematica
    m = 20;
    A007151 = Rest[Range[0, m]! CoefficientList[ InverseSeries[ Series[(2x - E^x + 1)/(x + 1), {x, 0, m}], x], x]];
    Q[n_] := Q[n] = If[n <= 1, 0, (1/2)(-A007151[[n - 1]] + A007151[[n]] + (n - 1) Q[n - 1])];
    a[n_] := If[n == 1, 1, A007151[[n - 1]] + Q[n - 1]];
    Array[a, m] (* Jean-François Alcover, Mar 30 2020, from Maple *)