cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007165 Number of P-graphs with 2n edges.

Original entry on oeis.org

1, 1, 2, 3, 8, 14, 42, 79, 252, 494, 1636, 3294, 11188, 22952, 79386, 165127, 579020, 1217270, 4314300, 9146746, 32697920, 69799476, 251284292, 539464358, 1953579240, 4214095612, 15336931928, 33218794236, 121416356108
Offset: 1

Views

Author

Keywords

References

  • R. C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math., 31 (1986), 47-63.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    bq := proc(q::integer) local m; if q mod 2 = 0 then RETURN(0); else m:=(q-1)/2; RETURN( sum(binomial(q,s)*binomial(s+m-1,m),s=0..q)/(q*2^(m+1)) ); fi; end: H := proc(maxord::integer) local resul,r,B; resul := 0; B := 0; for r from 2 to maxord by 2 do B := B+bq(r/2)*y^r; od : for r from 1 to maxord/2 do resul := resul + B^r; od : RETURN(resul); end: maxord := 60 : Hser := expand(H(maxord)) : for n from 2 to maxord by 2 do simplify(coeftayl(Hser,y=0,n)); od; # R. J. Mathar, Apr 24 2006
  • Mathematica
    1/x InverseSeries[ x (1 + 2x - x^2)/((1 + x)(1 + 2x)) + O[x]^30] //
    CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x*(1+2*x-x^2)/((1+x)*(1+2*x)+x*O(x^n))),n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A*(3-2*A)+x^2*A^2*(2+A)+x*O(x^n));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A)/(1-x^2*A*subst(A,x,-x+x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna */

Formula

From Paul D. Hanna, Dec 30 2011: (Start)
G.f. satisfies:
(1) A(x) = (1/x)*Series_Reversion(x*(1 + 2*x - x^2)/((1+x)*(1+2*x))).
(2) A(x) = (1 + x*A(x))*(1 + 2*x*A(x)) / (1 + 2*x*A(x) - x^2*A(x)^2).
(3) A(x) = (1 + x*A(x))/(1 - x^2*A(x)*A(-x)).
(4) A(x) = A(-x)/(1 - 2*x*A(-x)).
(5) A(x) - A(-x) = 2*x*A(x)*A(-x). (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004