A007165 Number of P-graphs with 2n edges.
1, 1, 2, 3, 8, 14, 42, 79, 252, 494, 1636, 3294, 11188, 22952, 79386, 165127, 579020, 1217270, 4314300, 9146746, 32697920, 69799476, 251284292, 539464358, 1953579240, 4214095612, 15336931928, 33218794236, 121416356108
Offset: 1
Keywords
References
- R. C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math., 31 (1986), 47-63.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math. 31 (1986) no 1, 47-63
Programs
-
Maple
bq := proc(q::integer) local m; if q mod 2 = 0 then RETURN(0); else m:=(q-1)/2; RETURN( sum(binomial(q,s)*binomial(s+m-1,m),s=0..q)/(q*2^(m+1)) ); fi; end: H := proc(maxord::integer) local resul,r,B; resul := 0; B := 0; for r from 2 to maxord by 2 do B := B+bq(r/2)*y^r; od : for r from 1 to maxord/2 do resul := resul + B^r; od : RETURN(resul); end: maxord := 60 : Hser := expand(H(maxord)) : for n from 2 to maxord by 2 do simplify(coeftayl(Hser,y=0,n)); od; # R. J. Mathar, Apr 24 2006
-
Mathematica
1/x InverseSeries[ x (1 + 2x - x^2)/((1 + x)(1 + 2x)) + O[x]^30] // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
PARI
{a(n)=polcoeff(1/x*serreverse(x*(1+2*x-x^2)/((1+x)*(1+2*x)+x*O(x^n))),n)} /* Paul D. Hanna */
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=1+x*A*(3-2*A)+x^2*A^2*(2+A)+x*O(x^n));polcoeff(A,n)} /* Paul D. Hanna */
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=(1+x*A)/(1-x^2*A*subst(A,x,-x+x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna */
Formula
From Paul D. Hanna, Dec 30 2011: (Start)
G.f. satisfies:
(1) A(x) = (1/x)*Series_Reversion(x*(1 + 2*x - x^2)/((1+x)*(1+2*x))).
(2) A(x) = (1 + x*A(x))*(1 + 2*x*A(x)) / (1 + 2*x*A(x) - x^2*A(x)^2).
(3) A(x) = (1 + x*A(x))/(1 - x^2*A(x)*A(-x)).
(4) A(x) = A(-x)/(1 - 2*x*A(-x)).
(5) A(x) - A(-x) = 2*x*A(x)*A(-x). (End)
Extensions
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004