cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007247 McKay-Thompson series of class 4B for the Monster group.

Original entry on oeis.org

1, 52, 834, 4760, 24703, 94980, 343998, 1077496, 3222915, 8844712, 23381058, 58359168, 141244796, 327974700, 742169724, 1627202744, 3490345477, 7301071680, 14987511560, 30138820888, 59623576440, 115928963656
Offset: 0

Views

Author

Keywords

Examples

			T4B = 1/q + 52*q + 834*q^3 + 4760*q^5 + 24703*q^7 + 94980*q^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, e}, e = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (e + 64 / e), {q, 0, n - 1/2}]] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 4 (2 - m)^2 / (m (1 - m)^(1/2)), {q, 0, 2 n - 1}]] (* Michael Somos, Jul 22 2011 *)
    QP = QPochhammer; A = (QP[q]/QP[q^2])^12; s = A + 64*(q/A) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from 2nd PARI script *)
    nmax = 30; CoefficientList[Series[64*x*Product[(1 + x^k)^12, {k, 1, nmax}] + Product[1/(1 + x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 01 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = prod( k=1, (n+1)\2, 1 - x^(2*k - 1), 1 + x * O(x^n))^12; polcoeff( A + 64 * x / A, n))} /* Michael Somos, Jul 22 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( A + 64 * x / A, n))} /* Michael Somos, Nov 11 2006 */
    
  • PARI
    { my(q='q+O('q^66), t=(eta(q)/eta(q^2))^12); Vec( t + 64*q/t ) } \\ Joerg Arndt, Apr 02 2017

Formula

Expansion of 4 * q * (1 + k'^2)^2 / (k' * k^2) in powers of q^2 where k is the Jacobian elliptic modulus, k' the complementary modulus and q is the nome.
Expansion of 4 * q^(1/2) * (k'^4 + 4*k^2) / (k'^2 * k) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 22 2011
a(n) = A007249(n) + 64 * A022577(n - 1). - Michael Somos, Jul 22 2011
a(n) ~ exp(2*Pi*sqrt(n)) / (2*n^(3/4)). - Vaclav Kotesovec, Apr 01 2017