A007298 Sums of consecutive Fibonacci numbers.
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 18, 19, 20, 21, 26, 29, 31, 32, 33, 34, 42, 47, 50, 52, 53, 54, 55, 68, 76, 81, 84, 86, 87, 88, 89, 110, 123, 131, 136, 139, 141, 142, 143, 144, 178, 199, 212, 220, 225, 228, 230, 231, 232, 233, 288, 322
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
isA007298 := proc(n) local i,Fi,j,Fj ; for i from 0 do Fi := combinat[fibonacci](i) ; for j from i do Fj :=combinat[fibonacci](j) ; if Fj-Fi = n then return true; elif Fj-Fi > n then break; end if; end do: Fj :=combinat[fibonacci](i+1) ; if Fj-Fi > n then return false; end if; end do: end proc: for n from 0 to 100 do if isA007298(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, May 25 2016
-
Mathematica
Union[Flatten[Table[Fibonacci[n]-Fibonacci[i], {n, 14}, {i, n}]]] (* T. D. Noe, Oct 17 2005 *) isA007298[n_] := Module[{i, Fi, j, Fj}, For[i = 0, True, i++, Fi = Fibonacci[i]; For[j = i, True, j++, Fj = Fibonacci[j]; Which[Fj - Fi == n, Return@True, Fj - Fi > n, Break[]]]; Fj := Fibonacci[i + 1]; If[Fj - Fi > n, Return@False]]]; Select[Range[0, 1000], isA007298] (* Jean-François Alcover, Nov 16 2023, after R. J. Mathar *)
-
PARI
A130233(n)=log(sqrt(5)*n+1.5)\log((1+sqrt(5))/2) list(lim)=my(v=List([0]),F=vector(A130233(lim),i,fibonacci(i)),s,t); for(i=1,#F, s=0; forstep(j=i,1,-1, s+=F[j]; if(s>lim, break); listput(v,s))); Set(v) \\ Charles R Greathouse IV, Oct 06 2016
Formula
log a(n) >> sqrt(n). - Charles R Greathouse IV, Oct 06 2016
Comments