cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007335 MU-numbers: next term is uniquely the product of 2 earlier terms.

Original entry on oeis.org

2, 3, 6, 12, 18, 24, 48, 54, 96, 162, 192, 216, 384, 486, 768, 864, 1458, 1536, 1944, 3072, 3456, 4374, 6144, 7776, 12288, 13122, 13824, 17496, 24576, 31104, 39366, 49152, 55296, 69984, 98304, 118098, 124416, 157464, 196608, 221184, 279936
Offset: 1

Views

Author

Keywords

Comments

All terms are 3-smooth. - Reinhard Zumkeller, Aug 13 2015
Empirically, this sequence corresponds to numbers of the form 2^v * 3^w with v = 1 or w = 1 or v and w both odd (see illustration in Links section). - Rémy Sigrist, Feb 16 2023

References

  • Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 359.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A000423.

Programs

  • Haskell
    a007335 n = a007335_list !! (n-1)
    a007335_list = 2 : 3 : f [3, 2] (singleton 6 1) where
       f xs m | v == 1    = y : f (y : xs) (g (map (y *) xs) m')
              | otherwise = f xs m'
              where g [] m = m
                    g (z:zs) m = g zs $ insertWith (+) z 1 m
                    ((y,v),m') = deleteFindMin m
    -- Reinhard Zumkeller, Aug 13 2015
    
  • Julia
    function isMU(u, n, h, i, r)
        ur = u[r]; ui = u[i]
        ur <= ui && return h
        if ur * ui > n
            r -= 1
        elseif ur * ui < n
            i += 1
        else
            h && return false
            h = true; i += 1; r -= 1
        end
        isMU(u, n, h, i, r)
    end
    function MUList(len)
        u = Array{Int, 1}(undef, len)
        u[1] = 2; u[2] = 3; i = 2; n = 2
        while i < len
            n += 1
            if isMU(u, n, false, 1, i)
                i += 1
                u[i] = n
            end
        end
        return u
    end
    MUList(41) |> println # Peter Luschny, Apr 07 2019
  • Mathematica
    s={2,3}; Do[n=Select[ Table[s[[j]] s[[k]], {j, Length@s}, {k, j+1, Length@s}] // Flatten // Sort // Split, #[[1]] > s[[-1]] && Length[#] == 1 &][[1,1]]; AppendTo[s, n], {39}]; s  (* Jean-François Alcover, Apr 22 2011 *)
    Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Times @@ # &, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {2, 3}, 39] (* Michael De Vlieger, Nov 16 2017 *)

Formula

a(n) = A003586(A261255(n)). - Reinhard Zumkeller, Aug 13 2015
Conjecture: Sum_{n>=1} 1/a(n) = 181/144. - Amiram Eldar, Jul 31 2022