A007335 MU-numbers: next term is uniquely the product of 2 earlier terms.
2, 3, 6, 12, 18, 24, 48, 54, 96, 162, 192, 216, 384, 486, 768, 864, 1458, 1536, 1944, 3072, 3456, 4374, 6144, 7776, 12288, 13122, 13824, 17496, 24576, 31104, 39366, 49152, 55296, 69984, 98304, 118098, 124416, 157464, 196608, 221184, 279936
Offset: 1
References
- Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 359.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Shyam Sunder Gupta, Ulam Numbers. In: Exploring the Beauty of Fascinating Numbers. Springer Praxis Books(). Springer, Singapore, (2025).
- Rémy Sigrist, Scatterplot of the 2-adic valuation of a(n) vs the 3-adic valuation of a(n) for n = 1..50000
- Robert G. Wilson v, Note, n.d.
Programs
-
Haskell
a007335 n = a007335_list !! (n-1) a007335_list = 2 : 3 : f [3, 2] (singleton 6 1) where f xs m | v == 1 = y : f (y : xs) (g (map (y *) xs) m') | otherwise = f xs m' where g [] m = m g (z:zs) m = g zs $ insertWith (+) z 1 m ((y,v),m') = deleteFindMin m -- Reinhard Zumkeller, Aug 13 2015
-
Julia
function isMU(u, n, h, i, r) ur = u[r]; ui = u[i] ur <= ui && return h if ur * ui > n r -= 1 elseif ur * ui < n i += 1 else h && return false h = true; i += 1; r -= 1 end isMU(u, n, h, i, r) end function MUList(len) u = Array{Int, 1}(undef, len) u[1] = 2; u[2] = 3; i = 2; n = 2 while i < len n += 1 if isMU(u, n, false, 1, i) i += 1 u[i] = n end end return u end MUList(41) |> println # Peter Luschny, Apr 07 2019
-
Mathematica
s={2,3}; Do[n=Select[ Table[s[[j]] s[[k]], {j, Length@s}, {k, j+1, Length@s}] // Flatten // Sort // Split, #[[1]] > s[[-1]] && Length[#] == 1 &][[1,1]]; AppendTo[s, n], {39}]; s (* Jean-François Alcover, Apr 22 2011 *) Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Times @@ # &, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {2, 3}, 39] (* Michael De Vlieger, Nov 16 2017 *)
Formula
Conjecture: Sum_{n>=1} 1/a(n) = 181/144. - Amiram Eldar, Jul 31 2022
Comments