A007371 Numbers k such that sigma(x) = k has exactly 2 solutions.
12, 18, 31, 32, 54, 56, 80, 98, 104, 108, 114, 124, 126, 128, 132, 140, 152, 156, 182, 186, 210, 264, 272, 280, 308, 320, 342, 378, 390, 392, 399, 403, 408, 416, 440, 444, 448, 492, 522, 532, 570, 572, 594, 608, 630, 632, 726, 762, 770, 774, 780, 784, 800
Offset: 1
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Donovan Johnson)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jul. 1992.
Crossrefs
Programs
-
Mathematica
a = Table[ 0, {750} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 751, a[ [ s ] ]++ ], {n, 1, 750} ]; Select[ Range[ 750 ], a[ [ # ] ] == 2 & ]
-
PARI
is(n)=sum(k=1,n,sigma(k)==n)==2 \\ Charles R Greathouse IV, Mar 09 2014
-
PARI
is(k) = invsigmaNum(k) == 2 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp