A007380 Number of 5th-order maximal independent sets in path graph.
1, 2, 1, 3, 1, 4, 2, 5, 4, 6, 7, 7, 11, 9, 16, 13, 22, 20, 29, 31, 38, 47, 51, 69, 71, 98, 102, 136, 149, 187, 218, 258, 316, 360, 452, 509, 639, 727, 897, 1043, 1257, 1495, 1766, 2134, 2493, 3031, 3536, 4288, 5031, 6054, 7165, 8547, 10196
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs", J. Graph Theory, submitted, 1994.
Links
- R. Yanco, Letter and Email to N. J. A. Sloane, 1994
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
Formula
Apparently, a(n) = a(n-2) + a(n-7) with g.f. -x*(1+2*x+x^3+x^5+x^6)/(-1+x^2+x^7). - R. J. Mathar, Oct 30 2009
a(n) = T(2, 7, n + 7) where T(a, b, n) = Sum_{a*x+b*y = n, x >= 0, y >= 0} binomial(x+y, y). - Sean A. Irvine, Jan 02 2018
Extensions
More terms from Sean A. Irvine, Jan 02 2018