A007382 Number of strict (-1)st-order maximal independent sets in path graph.
0, 0, 3, 4, 11, 16, 32, 49, 87, 137, 231, 369, 608, 978, 1595, 2574, 4179, 6754, 10944, 17699, 28655, 46355, 75023, 121379, 196416, 317796, 514227, 832024, 1346267
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994.
Links
Crossrefs
Equals A054451(n+1) - 1.
Programs
-
Mathematica
Table[Sum[Binomial[n - i + 1, i], {i, Floor[(n - 1)/2]}], {n, 30}] (* or *) Rest@ Abs@ CoefficientList[Series[x^3*(x^3 + 2 x^2 - x - 3)/((1 - x - x^2) (1 - x^2)^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 19 2017 *)
Formula
John W. Layman observes that if b(n) = 1+A007382(n) then b(n) = b(n-1) + 3b(n-2) - 2b(n-3) - 3b(n-4) + b(n-5) + b(n-6) for all 27 terms shown.
G.f.: x^3*(x^3+2x^2-x-3)/((1-x-x^2)*(1-x^2)^2).
a(n) = Sum_{i=1..floor((n-1)/2)} C(n-i+1, i). - Wesley Ivan Hurt, Sep 19 2017