A007390 Number of strict (-1)st-order maximal independent sets in cycle graph.
0, 0, 0, 4, 5, 15, 21, 44, 66, 120, 187, 319, 507, 840, 1348, 2204, 3553, 5775, 9329, 15124, 24454, 39600, 64055, 103679, 167735, 271440, 439176, 710644, 1149821, 1860495, 3010317, 4870844, 7881162, 12752040, 20633203, 33385279, 54018483
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, ``K-th order maximal independent sets in path and cycle graphs,'' J. Graph Theory, submitted, 1994.
Links
Formula
a(n) = A000204(n) - b(n) where b(1) = 1, b(2*n+1) = 2*n+2, b(2*n) = 3. - Sean A. Irvine, Jan 02 2018
Conjectures from Colin Barker, Jun 14 2019: (Start)
G.f.: x^4*(4 + x - 2*x^2 - x^3) / ((1 - x)^2*(1 + x)^2*(1 - x - x^2)).
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 3*a(n-4) + a(n-5) + a(n-6) for n>7.
(End)
Extensions
a(18) corrected and more terms from Sean A. Irvine, Jan 02 2018