A007392 Number of strict 3rd-order maximal independent sets in cycle graph.
0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 12, 0, 21, 5, 32, 17, 45, 38, 65, 70, 99, 115, 156, 180, 247, 279, 385, 435, 590, 682, 896, 1067, 1360, 1657, 2073, 2553, 3173, 3913, 4865, 5986, 7455, 9159, 11407, 14024, 17434, 21479, 26636, 32886, 40705, 50320
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs", Journal of Graph Theory, submitted, 1994, apparently unpublished.
Links
Crossrefs
Cf. A007387.
Formula
Conjecture: a(n) = 3*a(n-2) - 3*a(n-4) + a(n-5) + a(n-6) - 2*a(n-7) + a(n-9) with g.f. x^10*(-5+3*x^2)/((x^5+x^2-1)*(x-1)^2*(1+x)^2). - R. J. Mathar, Oct 30 2009
a(n) = A007387(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - Sean A. Irvine, Jan 02 2018
Extensions
More terms from Sean A. Irvine, Jan 02 2018