cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007448 Knuth's sequence (or Knuth numbers): a(n+1) = 1 + min( 2*a(floor(n/2)), 3*a(floor(n/3)) ).

Original entry on oeis.org

1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, 13, 13, 15, 15, 19, 19, 19, 19, 21, 21, 22, 27, 27, 27, 27, 27, 28, 31, 31, 31, 39, 39, 39, 39, 39, 39, 39, 39, 40, 43, 43, 43, 45, 45, 46, 55, 55, 55, 55, 55, 55, 55, 55, 55, 57, 57, 58, 63, 63, 63, 63, 63, 64, 67, 67, 67, 79, 79, 79, 79
Offset: 0

Views

Author

Keywords

Comments

Record values and where they occur: a(A002977(n-1)) = A002977(n) and a(m) < A002977(n) for m < A002977(n-1). - Reinhard Zumkeller, Jul 13 2010
A003817 and A179526 are subsequences. - Reinhard Zumkeller, Jul 18 2010

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002977.

Programs

  • Haskell
    a007448 n = a007448_list !! n
    a007448_list = f [0] [0] where
       f (x:xs) (y:ys) = z : f (xs ++ [2*z,2*z]) (ys ++ [3*z,3*z,3*z])
         where z = 1 + min x y
    -- Reinhard Zumkeller, Sep 20 2011
    
  • Maple
    a := proc(n) option remember; ifelse(n = 0, 1, 1 + min(2 * a(iquo(n-1, 2)), 3 * a(iquo(n-1,  3)))) end: seq(a(n), n = 0..70);  # Peter Luschny, Jul 16 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1 + Min[2*a[Floor[(n - 1)/2]], 3*a[Floor[(n - 1)/3]]]; Table[ a[n], {n, 0, 72}] (* Robert G. Wilson v, Jan 29 2005, corrected by Michael De Vlieger, Jul 16 2025 *)
  • Python
    def aupton(nn):
        alst = [1]
        [alst.append(1 + min(2*alst[n//2], 3*alst[n//3])) for n in range(nn)]
        return alst
    print(aupton(70)) # Michael S. Branicky, Mar 28 2022