A007448 Knuth's sequence (or Knuth numbers): a(n+1) = 1 + min( 2*a(floor(n/2)), 3*a(floor(n/3)) ).
1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, 13, 13, 15, 15, 19, 19, 19, 19, 21, 21, 22, 27, 27, 27, 27, 27, 28, 31, 31, 31, 39, 39, 39, 39, 39, 39, 39, 39, 40, 43, 43, 43, 45, 45, 46, 55, 55, 55, 55, 55, 55, 55, 55, 55, 57, 57, 58, 63, 63, 63, 63, 63, 64, 67, 67, 67, 79, 79, 79, 79
Offset: 0
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Knuth Number.
Crossrefs
Cf. A002977.
Programs
-
Haskell
a007448 n = a007448_list !! n a007448_list = f [0] [0] where f (x:xs) (y:ys) = z : f (xs ++ [2*z,2*z]) (ys ++ [3*z,3*z,3*z]) where z = 1 + min x y -- Reinhard Zumkeller, Sep 20 2011
-
Maple
a := proc(n) option remember; ifelse(n = 0, 1, 1 + min(2 * a(iquo(n-1, 2)), 3 * a(iquo(n-1, 3)))) end: seq(a(n), n = 0..70); # Peter Luschny, Jul 16 2025
-
Mathematica
a[0] = 1; a[n_] := a[n] = 1 + Min[2*a[Floor[(n - 1)/2]], 3*a[Floor[(n - 1)/3]]]; Table[ a[n], {n, 0, 72}] (* Robert G. Wilson v, Jan 29 2005, corrected by Michael De Vlieger, Jul 16 2025 *)
-
Python
def aupton(nn): alst = [1] [alst.append(1 + min(2*alst[n//2], 3*alst[n//3])) for n in range(nn)] return alst print(aupton(70)) # Michael S. Branicky, Mar 28 2022
Comments